Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Automatic lung segmentation based on Graph Cut using a distance-constrained energy

Lung segmentation serves to ensure that all the parts of the lungs are considered during pulmonary image analysis by isolating the lung from the surrounding anatomy in the image. Research has shown that computed tomography (CT) images greatly improves the accuracy of the diagnosis obtained by a physician for lung cancer detection. Therefore, inspired by the success of Graph Cut in image segmentation and given that manual methods of analysing CT images are tedious and time-consuming, an automatic segmentation method based on Graph Cut is proposed which makes use of a distance-constrained energy (DCE). Graph Cut produces globally optimal solutions by modelling the image data and spatial relationship among the pixels. However, several anatomical regions in the thoracic CT image have pixel intensity values similar to the lungs, leading to results where the lung tissue and all these regions are included in the segmentation result. The global energy function is, therefore, further constrained by using the distance of pixels from a coarsely segmented region of the CT image containing the lungs. The proposed method, utilising the DCE function, shows significant improvement over using the unconstrained energy function in segmenting the lungs from the CT images using Graph Cut.

References

    1. 1)
      • 38. Dolejsi, M., Kybic, J., Polovincak, M., et al: ‘The lung TIME: annotated lung nodule dataset and nodule detection framework’. Proc. SPIE Conf. Medical Imaging 2009: Computer-Aided Diagnosis, volume 7260 of Society of Photo-Optical Instrumentation Engineers (SPIE) Conf. Series, 2009.
    2. 2)
      • 32. Slabaugh, G., Unal, G.: ‘Graph cuts segmentation using an elliptical shape prior’. IEEE Int. Conf. Image Processing, 2005. ICIP 2005, 2005, volume 2, pp. II1222–5.
    3. 3)
      • 29. Oluyide, O., Viriri, S., Tapamo, J.-R.: ‘A two-stage fuzzy c-means clustering algorithm for lung segmentation’. Proc. 2014 PRASA, RobMech and AflaT Int. Joint Symp., 2014, pp. 4952.
    4. 4)
      • 6. Rubin, G.D.: ‘Data explosion: the challenge of multidetector-row CT’, Eur. J. Radiol., 2000, 36, (2), pp. 7480.
    5. 5)
      • 12. Van Ginneken, B.: ‘Computer-aided diagnosis in thoracic computed tomography’, Imaging Decis. MRI, 2008, 12, (3), pp. 1122.
    6. 6)
      • 20. Iqbal, S., Dar, A.H.: ‘Lungs segmentation by developing binary mask’. Proc. 7th Int. Conf. Frontiers of Information Technology, FIT ‘09, 2009, pp. 75:1–75:4.
    7. 7)
      • 33. Funka-Lea, G., Boykov, Y., Florin, C., et al: ‘Automatic heart isolation for CT coronary visualization using Graph-Cuts’. 3rd IEEE Int. Symp. Biomedical Imaging: Nano to Macro, 2006, ISBI ‘06, 2006, 2006, pp. 614617.
    8. 8)
      • 17. Antonelli, M., Lazzerini, B., Marcelloni, F.: ‘Segmentation and reconstruction of the lung volume in CT images’. Proc. 2005 ACM Symp. Applied Computing, SAC ‘05, 2005, pp. 255259.
    9. 9)
      • 1. The National Lung Screening Trial Research Team: ‘Reduced lung-cancer mortality with low-dose computed tomographic screening’, New England J. Med., 2011, 365, (5), pp. 395409.
    10. 10)
      • 26. Abdollahi, B., Soliman, A., Civelek, A., et al: ‘A novel Gaussian scale space-based joint MGRF framework for precise lung segmentation’. 19th IEEE Int. Conf. Image Processing, 2012, ICIP ‘12, 2012, pp. 20292032.
    11. 11)
      • 31. Boykov, Y., Funka-Lea, G.: ‘Graph Cuts and efficient N-D image segmentation’, Int. J. Comput. Vis., 2006, 70, (2), pp. 109131.
    12. 12)
      • 4. Midthun, D.E.: ‘Early detection of lung cancer’, F1000 Faculty Rev., 2016, 5, (739), pp. 110.
    13. 13)
      • 9. Castellino, R.A.: ‘Computer aided detection (CAD): an overview’, Cancer Imaging, 2005, 5, (1), pp. 1719.
    14. 14)
      • 10. Hirose, T., Nitta, N., Shiraishi, J., et al: ‘Evaluation of computer-aided diagnosis (CAD) software for the detection of lung nodules on multidetector row computed tomography (MDCT): JAFROC study for the improvement in radiologists’ diagnostic accuracy’, Acad. Radiol., 2008, 15, (12), pp. 15051512.
    15. 15)
      • 18. Zhou, X., Hayashi, T., Hara, T., et al: ‘Automatic segmentation and recognition of anatomical lung structures from high–resolution chest CT images’, Comput. Med. Imaging Graph., 2006, 30, (5), pp. 299313.
    16. 16)
      • 7. Traverso, A., Lopez Torres, E., Fantacci, M.E., et al: ‘Computer-aided detection systems to improve lung cancer early diagnosis: state-of-the-art and challenges’, J. Phys. Conf. Ser., 2017, 841, (012013), pp. 16.
    17. 17)
      • 35. Kleinberg, J., Tardos, E.: ‘Approximation algorithms for classification problems with pairwise relationships: metric labelling and Markov random fields’, J. ACM, 2002, 49, (5), pp. 616639.
    18. 18)
      • 22. Pu, J., Paik, D. S., Meng, X., et al: ‘Shape break-and-repair strategy and its application to automated medical image segmentation’, IEEE Trans. Vis. Comput. Graphics, 2011, 17, (1), pp. 115124.
    19. 19)
      • 37. McNitt-Gray, M.F., Armato, S.G., Meyer, C.R., et al: ‘The lung image database consortium (LIDC) data collection process for nodule detection and annotation’. Proc. SPIE Conf. Medical Imaging 2007: Computer-Aided Diagnosis, volume 6514 of Society of Photo-Optical Instrumentation Engineers (SPIE) Conf. Series, 2007, pp. 14641474.
    20. 20)
      • 21. Jaffar, M.A., Hussain, A., Mirza, A.: ‘Fuzzy entropy based optimization of clusters for the segmentation of lungs in CT scanned images’, Knowl. Inf. Syst., 2010, 24, (1), pp. 91111.
    21. 21)
      • 5. World Health Organisation: ‘Cancer’ (February 2017). Available: http://www.who.int/mediacentre/factsheets/fs297/en/, accessed 6 December 2017.
    22. 22)
      • 15. Manikandan, T.: ‘Challenges in lung cancer detection using computer-aided diagnosis (CAD) systems – a key for survival of patients’, Arch. Gen. Intern. Med., 2017, 1, (2).
    23. 23)
      • 2. Self, W.H., Courtney, D.M., McNaughton, C.D., et al: ‘High discordance of chest X-ray and computed tomography for detection of pulmonary opacities in ED patients: implications for diagnosing pneumonia’, Am. J. Emerg. Med., 2013, 31, (2), pp. 401405.
    24. 24)
      • 27. Guo, Y., Zhou, C., Chan, H.-P., et al: ‘Automated iterative neutrosophic lung segmentation for image analysis in thoracic computed tomography’, Med. Phys., 2013, 40, (8).
    25. 25)
      • 30. Boykov, Y., Jolly, M.-P.: ‘Interactive graph cuts for optimal boundary and region segmentation of objects in N-D images’. Proc. Eighth IEEE Int. Conf. Computer Vision, 2001, volume 1 of ICCV 2001, 2001, pp. 105112.
    26. 26)
      • 39. Dice, L.R.: ‘Measures of the amount of ecologic association between species’, Ecology, 1945, 26, (3), pp. 297302.
    27. 27)
      • 14. El-Baz, A., Beache, G. M., Gimel'farb, G., et al: ‘Computer-aided diagnosis systems for lung cancer: challenges and methodologies’, Int. J. Biomed. Imaging, 2012, 2013, p. 46.
    28. 28)
      • 8. Armato, S.G., Li, F., Giger, M.L., et al: ‘Lung cancer: performance of automated lung nodule detection applied to cancers missed in a CT screening program’, Radiology, 2002, 225, (3), pp. 685692.
    29. 29)
      • 11. Chabi, M.-L., Borget, I., Ardiles, R., et al: ‘Evaluation of the accuracy of a computer-aided diagnosis (CAD) system in breast ultrasound according to the radiologist's experience’, Acad. Radiol., 2012, 19, (3), pp. 311319.
    30. 30)
      • 28. Kothavari, K., Deepa, S.N.: ‘Segmentation of lung on CT images using robust active shape model (RASM) and tumour location using morphological processing’, Acad. J. Cancer Res., 2014, 7, (2), pp. 7380.
    31. 31)
      • 3. Tutkun, E., Abusoglu, S., Yilmaz, H., et al: ‘Farewell to an old friend: chest X-ray vs high-resolution computed tomography in welders’ lung disease’, Clin. Respir. J., 2014, 8, (2), pp. 220224.
    32. 32)
      • 34. Nakagomi, K., Shimizu, A., Kobatake, H., et al: ‘Multi-shape graph cuts with neighbor prior constraints and its application to lung segmentation from a chest CT volume’, Med. Image Anal., 2013, 17, (1), pp. 6277.
    33. 33)
      • 23. Mesanovic, N., Grgic, M., Huseinagic, H., et al: ‘Automatic CT image segmentation of the lungs with region growing algorithm’. 18th Int. Conf. Systems, Signals and Image Processing – IWSSIP 2011, 2011, pp. 395400.
    34. 34)
      • 16. Hu, S., Hoffman, E.A., Reinhardt, J.M.: ‘Automatic lung segmentation for accurate quantitation of volumetric X-ray CT images’, IEEE Trans. Med. Imaging, 2001, 20, pp. 490498.
    35. 35)
      • 19. Massoptier, L., Misra, A., Sowmya, A.: ‘Automatic lung segmentation in HRCT images with diffuse parenchymal lung disease using graph-cut’. 24th Int. Conf. Image and Vision Computing New Zealand, 2009, pp. 266270.
    36. 36)
      • 24. Wei, Y., Shen, G., Li, J.-j.: ‘A fully automatic method for lung parenchyma segmentation and repairing’, J. Digit. Imaging, 2013, 26, (3), pp. 483495.
    37. 37)
      • 25. Shojaii, R., Alirezaie, J., Babyn, P.: ‘Automatic lung segmentation in CT images using watershed transform’, IEEE Int. Conf. Image Processing, 2005, 2 of ICIP ‘05, 2005, pp. II1270–3.
    38. 38)
      • 13. Liang, M., Tang, W., Xu, D.M., et al: ‘Low-dose CT screening for lung cancer: computer-aided detection of missed lung cancers’, Radiology, 2016, 281, (1), pp. 279288.
    39. 39)
      • 36. Boykov, Y., Kolmogorov, V.: ‘An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision’, IEEE Trans. Pattern Anal. Mach. Intell., 2004, 26, (9), pp. 11241137.
    40. 40)
      • 40. Jaccard, P.: ‘The distribution of the flora in the Alpine Zone’, New Phytologist, 1912, 11, (2), pp. 3750.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cvi.2017.0226
Loading

Related content

content/journals/10.1049/iet-cvi.2017.0226
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address