http://iet.metastore.ingenta.com
1887

Target tracking approach via quantum genetic algorithm

Target tracking approach via quantum genetic algorithm

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Computer Vision — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Aiming at an efficient feature match and similarity search in visual tracking, this study proposes a tracking algorithm based on quantum genetic algorithm. Therein, the global optimisation ability of quantum genetic algorithm is utilised. In the framework of quantum genetic algorithm, the positions of pixels are taken as individuals in population, while scale-invariant feature transform and colour features are taken as target model. Via defining the objective function, individual's fitness values can be measured. Visual tracking is realised when the pixel point with the biggest fitness value is searched and its corresponding position is returned. The experiment results show that the tracking algorithm the authors proposed performs more efficiently when it is compared with the state-of-the-art tracking algorithms.

References

    1. 1)
      • 1. Qin, Z., Shelton, C.R.: ‘Social grouping for multi-target tracking and head pose estimation in video’, IEEE Trans. Pattern Anal. Mach. Intell., 2016, 38, (10), pp. 20822095, doi: 10.1109/TPAMI.2015.2505292.
    2. 2)
      • 2. Chen, S., Wang, Q.Q., Zhang, S.H., et al: ‘Study of target tracking techniques based on non-scanning imaging lidar’, Int. Conf. Opt. Instrum. Technol., 2015, 9622, pp. 96220Y-196220Y-7, doi: 10.1117/12.2190714.
    3. 3)
      • 3. Youm, S., Liu, S.: ‘Development healthcare PC and multimedia software for improvement of health status and exercise habits’, Multimedia Tools Appl., 2015, 76, (17), pp. 1775117763.
    4. 4)
      • 4. Zhang, S.P., Zhou, H.Y., Jiang, F., et al: ‘Robust visual tracking using structurally random projection and weighted least squares’, IEEE Trans. Circuits Syst. Video Technol., 2015, 25, (11), pp. 17491860, doi: 10.1109/TCSVT.2015.2406194.
    5. 5)
      • 5. Choi, J., Chang, H.J., Jeong, J.: ‘Visual tracking using attention-modulated disintegration and integration’, IEEE Conf. on Computer Vision and Pattern Recognition, 2016, pp. 43214330.
    6. 6)
      • 6. Zhang, S.P., Lan, X.Y., Yao, H.X., et al: ‘A biologically inspered appearance model for robust visual tracking’, IEEE Trans. Neural Netw. Learn. Systems, 2016, 99, pp. 114, doi: 10.1109/TNNLS.2016.2586194.
    7. 7)
      • 7. Zhang, T., Liu, S., Xu, C., et al: ‘Structural sparse tracking’. IEEE Conf. on Computer Vision and Pattern Recognition, 2015, pp. 150158, doi: 10.1109/CVPR.2015.7298610.
    8. 8)
      • 8. Zhang, S.P., Lan, X.Y., Qi, Y.K., et al: ‘Robust visual tracking via basis matching’, IEEE Trans. Circuits Syst. Video Technol., 2017, 27, (3), pp. 421430, doi: 10.1109/TCSVT.2016.2539860.
    9. 9)
      • 9. Henriques, J.F., Caseiro, R., Martins, P., et al: ‘High-speed tracking with kernelized correlation filters’, IEEE Trans. Pattern Anal. Mach. Intell., 2014, 37, (3), pp. 583596, doi: 10.1109/TPAMI.2014.2345390.
    10. 10)
      • 10. Zhang, S.P., Zhou, H.Y., Yao, H.X., et al: ‘Adaptive normal hedge for robust visual tracking’, Signal Process., 2015, 110, pp. 132142, doi: 10.1016/j.sigpro.2014.08.027.
    11. 11)
      • 11. Wu, Y., Cheng, J., Wang, J., et al: ‘Real- time probabilistic covariance tracking with efficient model update’, IEEE Trans. Image Process., 2012, 21, (5), pp. 28242837, doi: 10.1109/TIP.2011.2182521.
    12. 12)
      • 12. Danelljan, M., Khan, F.S., Felsberg, M., et al: ‘Adaptive colour attributes for real-time visual tracking’. IEEE Conf. on Computer Vision and Pattern Recognition, 2014, pp. 10901097, doi: 10.1109/CVPR.2014.143.
    13. 13)
      • 13. Dou, J., Li, J.: ‘Robust visual tracking based on joint multi-feature histogram by integrating particle filter and mean shift’, Optik – Int. J. Light Electron Opt., 2015, 126, (15), pp. 14491456, doi: 10.1016/j.ijleo.2015.04.031.
    14. 14)
      • 14. Sun, Y., Ding, M.: ‘Route planning based on gradient-field quantum genetic algorithm model’, J. Softw., 2013, 8, (10), pp. 25112516, doi: 10.4304/jsw.8.10.2511-2516.
    15. 15)
      • 15. Wu, Y., Li, J.W., Yang, M.H.: ‘Online object tracking: a benchmark’. IEEE Conf. on Computer Vision and Pattern Recognition, 2013, pp. 24115418, doi: 10.1109/CVPR.2013.312.
    16. 16)
      • 16. Comaniciu, D., Ramesh, V., Meer, P.: ‘Kernel-based object tracking’, IEEE Trans. Pattern Anal. Mach. Intell., 2003, 25, (5), pp. 564575, doi: 10.1109/TPAMI.2003.1195991.
    17. 17)
      • 17. Isard, M., Blake, A.: ‘CONDENSATION-conditional density propagation for visual tracking’, Int. J. Comput. Vis., 1998, 29, (1), pp. 528.
    18. 18)
      • 18. Kalal, Z., Matas, J., Mikolajczyk, K.: ‘P-N learning: bootstrapping binary classifiers by structural constraints’. IEEE Conf. on Computer Vision and Pattern Recognition, 2010, vol. 238, no. 6, pp. 4956, doi: 10.1109/CVPR.2010.5540231.
    19. 19)
      • 19. Wen, Z.Q., Zeng, Z.G., Zhu, W.Q.: ‘Kernel optimization strategy based on mean shift’. Int. Conf. on Fuzzy Systems and Knowledge Discovery, 2015, pp. 15771582, doi: 10.1109/FSKD.2015.7382180.
    20. 20)
      • 20. Han, K.H., Kim, J.H.: ‘Genetic quantum algorithm and its application to combinatorial optimization problem’, Congr. Evol. Comput., 2000, 2, (2), pp. 13541360, doi: 10.1109/CEC.2000.870809.
    21. 21)
      • 21. Han, K.H., Kim, J.H.: ‘Quantum-inspired evolutionary algorithm for a class of combinatorial optimization’, IEEE Trans. Evol. Comput., 2002, 6, (6), pp. 580593, doi: 10.1109/TEVC.2002.804320.
    22. 22)
      • 22. Han, K.H., Kim, J.H.: ‘On setting the parameters of quantum-inspired evolutionary algorithm for practical applications’, Congr. Evol. Comput., 2003, 1, (3), pp. 178194, doi: 10.1109/CEC.2003.1299572.
    23. 23)
      • 23. Han, K.H., Kim, J.H.: ‘Quantum-inspired evolutionary algorithms with a new termination criterion, He gate, and two-phase scheme’, IEEE Trans. Evol. Comput., 2004, 8, (2), pp. 156169, doi: 10.1109/TEVC.2004.823467.
    24. 24)
      • 24. Wu, Y.J., Gao, C., Tang, W.Y., et al: ‘An outage risk oriented dynamic distribution network recon-figuration methodology considering the effects of weather conditions on power line failure rate’, Electr. Mach. Power Syst., 2016, 44, (19), pp. 22242236, doi: 10.1080/15325008.2016.1219428.
    25. 25)
      • 25. Liu, J.Y., Wang, H.X., Sun, Y.Y., et al: ‘Real-coded quantum-inspired genetic algorithm-based BP neural network algorithm’, Math. Probl. Eng., 2015, 2015, pp. 110, doi: 10.1155/2015/571295.
    26. 26)
      • 26. Ye, Z.C., He, C.M.: ‘Morphological neural network based on QGA for image restoration’, Appl. Mech. Mater., 2013, 280, pp. 13881391, doi: 10.4028/www.scientific.net/AMM.278-280.1388.
    27. 27)
      • 27. Zhang, J., Li, H., Tang, Z., et al: ‘Quantum genetic algorithm for adaptive image multi-thresholding segmentation’, Int. J. Comput. Appl. Technol., 2015, 51, (3), pp. 203211, doi: 10.1504/IJCAT.2015.069334.
    28. 28)
      • 28. Dey, S., Bhattacharyya, S., Maulik, U.: ‘Quantum inspired automatic clustering for multi-level image thresholding’. Int. Conf. on Computational Intelligence and Communication Networks, 2014, pp. 247251, doi: 10.1109/CICN.2014.64.
    29. 29)
      • 29. Amal, A., Osama, A., Usama, S.: ‘A framework for satellite image enhancement using quantum genetic and weighted IHS + wavelet fusion method’, Int. J. Adv. Comput. Sci. Appl., 2016, 7, (4), pp. 815.
    30. 30)
      • 30. Wang, H.X., Fan, J.H., Li, Y.: ‘Research of shoeprint image matching based on SIFT algorithm’, J. Comput. Methods Sci. Eng., 2016, 16, (2), pp. 349359, doi: 10.3233/JCM-160622.
    31. 31)
      • 31. Mu, K., Hui, F., Zhao, X.: ‘Multiple vehicle detection and tracking in highway traffic surveillance video based on SIFT feature matching’, J. Inf. Process. Syst., 2016, 12, (2), pp. 183195.
    32. 32)
      • 32. Mazur, T.R., Fischervaluck, B.W., Wang, Y., et al: ‘SIFT-based dense pixel tracking on 0.35 T cine-MR images acquired during image-guided radiation therapy with application to gating optimization’, Med. Phys., 2016, 43, (1), pp. 279293, doi: 10.1118/1.4938096.
    33. 33)
      • 33. Cui, X., Wu, Q., Zhou, J.: ‘Online fragments-based scale invariant electro-optic tracking with SIFT’, Optik- Int. J. Light Electron Optics, 2015, 126, (18), pp. 17201725, doi: 10.1016/j.ijleo.2015.04.071.
    34. 34)
      • 34. Mikolajczyk, K., Schmid, C.: ‘A performance evaluation of local descriptors’, IEEE Trans. Pattern Anal. Mach. Intell., 2005, 27, (10), pp. 16151630, doi: 10.1109/CVPR.2003.1211478.
    35. 35)
      • 35. Singh, C., Kaur, K.P.: ‘A fast and efficient image retrieval system based on colour and texture features’, J. Vis. Commun. Image Represent., 2016, 41, pp. 225238, doi: 10.1016/j.jvcir.2016.10.002.
    36. 36)
      • 36. Yahya, M.F., Arshad, M.R.: ‘Tracking of multiple markers based on colour for visual servo control in underwater docking’. IEEE Int. Conf. on Control System, Computing and Engineering, 2015, pp. 482487, doi: 10.1109/ICCSCE.2015.7482233.
    37. 37)
      • 37. Siena, S., Kumar, B.V.K.V.: ‘Detecting occlusion from colour information to improve visual tracking’. IEEE Int. Conf. on Acoustics, Speech and Signal Processing (ICASSP), 2016, pp. 11101114, doi: 10.1109/ICASSP.2016.7471848.
    38. 38)
      • 38. Xiao, C., Chen, W.J., Gao, H.L.: ‘Object tracking algorithm based on HSV colour histogram and block-sparse representation’. Chinese Control Conf. (CCC), 2015, pp. 38263931, doi: 10.1109/ChiCC.2015.7260229.
    39. 39)
      • 39. Patil, S., Talele, K.: ‘Suspicious movement detection and tracking based on colour histogram, communication’, Inf. Comput. Technol., 2015, pp. 16, doi:10.1109/ICCICT.2015.7045698.
    40. 40)
      • 40. Fazli, S., Pour, H.M., Bouzari, H.: ‘Particle filter based object tracking with SIFT and colour feature’. Int. Conf. on Machine Vision, 2009, pp. 8993, doi: 10.1109/ICMV.2009.47.
    41. 41)
      • 41. Gurkan, F., Gunsel, B., Kumlu, D.: ‘Head rotation classification using dense motion estimation and particle filter tracking’. Int. Conf. on Electrical and Electronics Engineering, 2015, pp. 197201, doi: 10.1109/ELECO.2015.7394573.
    42. 42)
      • 42. Lowe, D.: ‘Distinctive image features from scale-Invariant Key-points’, Int. J. Comput. Vis., 2004, 60, (2), pp. 91110, doi: 10.1023/B:VISI.0000029664.99615.94.
    43. 43)
      • 43. Jia, X., Lu, H., Yang, M.H.: ‘Visual tracking via adaptive structural local sparse appearance model’. IEEE Conf. on Computer Vision and Pattern Recognition, 2012, vol. 157, no. 10, pp. 18221829, doi: 10.1109/CVPR.2012.6247880.
    44. 44)
      • 44. Learned-Miller, E., Sevilla-Lara, L.: ‘Distribution fields for tracking’. IEEE Conf. on Computer Vision and Pattern Recognition, 2012, vol. 157, no. 10, pp. 19101917, doi: 10.1109/CVPR.2012.6247891.
    45. 45)
      • 45. Zhang, T., Ghanem, B., Liu, S., et al: ‘Robust visual tracking via multi-task sparse learning’. IEEE Conf. on Computer Vision and Pattern Recognition, 2012, vol. 157, no. 10, pp. 20422049, doi: 10.1109/CVPR.2012.6247908.
    46. 46)
      • 46. Babenko, B., Yang, M.H., Belongie, S.: ‘Visual tracking with online multiple instance learning’. IEEE Conf. on Computer Vision and Pattern Recognition, 2009, vol. 33, no. 8, pp. 983990, doi: 10.1109/CVPR.2009.5206737.
    47. 47)
      • 47. Wang, N., Yeung, D.Y.: ‘Learning a deep compact image representation for visual tracking’, Adv. Neural Inform. Process. Syst., 2013, 1, pp. 809817.
    48. 48)
      • 48. Hare, S., Saffari, A., Torr, P.H.S.: ‘Struck: structured output tracking with kernels’, IEEE Trans. Pattern Anal. Mach. Intell., 2011, 38, (10), pp. 20962109, doi: 10.1109/ICCV.2011.6126251.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cvi.2017.0176
Loading

Related content

content/journals/10.1049/iet-cvi.2017.0176
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address