http://iet.metastore.ingenta.com
1887

Target tracking approach via quantum genetic algorithm

Target tracking approach via quantum genetic algorithm

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Computer Vision — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Aiming at an efficient feature match and similarity search in visual tracking, this study proposes a tracking algorithm based on quantum genetic algorithm. Therein, the global optimisation ability of quantum genetic algorithm is utilised. In the framework of quantum genetic algorithm, the positions of pixels are taken as individuals in population, while scale-invariant feature transform and colour features are taken as target model. Via defining the objective function, individual's fitness values can be measured. Visual tracking is realised when the pixel point with the biggest fitness value is searched and its corresponding position is returned. The experiment results show that the tracking algorithm the authors proposed performs more efficiently when it is compared with the state-of-the-art tracking algorithms.

References

    1. 1)
      • Z. Qin , C.R. Shelton .
        1. Qin, Z., Shelton, C.R.: ‘Social grouping for multi-target tracking and head pose estimation in video’, IEEE Trans. Pattern Anal. Mach. Intell., 2016, 38, (10), pp. 20822095, doi: 10.1109/TPAMI.2015.2505292.
        . IEEE Trans. Pattern Anal. Mach. Intell. , 10 , 2082 - 2095
    2. 2)
      • S. Chen , Q.Q. Wang , S.H. Zhang .
        2. Chen, S., Wang, Q.Q., Zhang, S.H., et al: ‘Study of target tracking techniques based on non-scanning imaging lidar’, Int. Conf. Opt. Instrum. Technol., 2015, 9622, pp. 96220Y-196220Y-7, doi: 10.1117/12.2190714.
        . Int. Conf. Opt. Instrum. Technol. , 96220Y - 962201
    3. 3)
      • S. Youm , S. Liu .
        3. Youm, S., Liu, S.: ‘Development healthcare PC and multimedia software for improvement of health status and exercise habits’, Multimedia Tools Appl., 2015, 76, (17), pp. 1775117763.
        . Multimedia Tools Appl. , 17751 - 17763
    4. 4)
      • S.P. Zhang , H.Y. Zhou , F. Jiang .
        4. Zhang, S.P., Zhou, H.Y., Jiang, F., et al: ‘Robust visual tracking using structurally random projection and weighted least squares’, IEEE Trans. Circuits Syst. Video Technol., 2015, 25, (11), pp. 17491860, doi: 10.1109/TCSVT.2015.2406194.
        . IEEE Trans. Circuits Syst. Video Technol. , 11 , 1749 - 1860
    5. 5)
      • J. Choi , H.J. Chang , J. Jeong .
        5. Choi, J., Chang, H.J., Jeong, J.: ‘Visual tracking using attention-modulated disintegration and integration’, IEEE Conf. on Computer Vision and Pattern Recognition, 2016, pp. 43214330.
        . IEEE Conf. on Computer Vision and Pattern Recognition , 4321 - 4330
    6. 6)
      • S.P. Zhang , X.Y. Lan , H.X. Yao .
        6. Zhang, S.P., Lan, X.Y., Yao, H.X., et al: ‘A biologically inspered appearance model for robust visual tracking’, IEEE Trans. Neural Netw. Learn. Systems, 2016, 99, pp. 114, doi: 10.1109/TNNLS.2016.2586194.
        . IEEE Trans. Neural Netw. Learn. Systems , 1 - 14
    7. 7)
      • T. Zhang , S. Liu , C. Xu .
        7. Zhang, T., Liu, S., Xu, C., et al: ‘Structural sparse tracking’. IEEE Conf. on Computer Vision and Pattern Recognition, 2015, pp. 150158, doi: 10.1109/CVPR.2015.7298610.
        . IEEE Conf. on Computer Vision and Pattern Recognition , 150 - 158
    8. 8)
      • S.P. Zhang , X.Y. Lan , Y.K. Qi .
        8. Zhang, S.P., Lan, X.Y., Qi, Y.K., et al: ‘Robust visual tracking via basis matching’, IEEE Trans. Circuits Syst. Video Technol., 2017, 27, (3), pp. 421430, doi: 10.1109/TCSVT.2016.2539860.
        . IEEE Trans. Circuits Syst. Video Technol. , 3 , 421 - 430
    9. 9)
      • J.F. Henriques , R. Caseiro , P. Martins .
        9. Henriques, J.F., Caseiro, R., Martins, P., et al: ‘High-speed tracking with kernelized correlation filters’, IEEE Trans. Pattern Anal. Mach. Intell., 2014, 37, (3), pp. 583596, doi: 10.1109/TPAMI.2014.2345390.
        . IEEE Trans. Pattern Anal. Mach. Intell. , 3 , 583 - 596
    10. 10)
      • S.P. Zhang , H.Y. Zhou , H.X. Yao .
        10. Zhang, S.P., Zhou, H.Y., Yao, H.X., et al: ‘Adaptive normal hedge for robust visual tracking’, Signal Process., 2015, 110, pp. 132142, doi: 10.1016/j.sigpro.2014.08.027.
        . Signal Process. , 132 - 142
    11. 11)
      • Y. Wu , J. Cheng , J. Wang .
        11. Wu, Y., Cheng, J., Wang, J., et al: ‘Real- time probabilistic covariance tracking with efficient model update’, IEEE Trans. Image Process., 2012, 21, (5), pp. 28242837, doi: 10.1109/TIP.2011.2182521.
        . IEEE Trans. Image Process. , 5 , 2824 - 2837
    12. 12)
      • M. Danelljan , F.S. Khan , M. Felsberg .
        12. Danelljan, M., Khan, F.S., Felsberg, M., et al: ‘Adaptive colour attributes for real-time visual tracking’. IEEE Conf. on Computer Vision and Pattern Recognition, 2014, pp. 10901097, doi: 10.1109/CVPR.2014.143.
        . IEEE Conf. on Computer Vision and Pattern Recognition , 1090 - 1097
    13. 13)
      • J. Dou , J. Li .
        13. Dou, J., Li, J.: ‘Robust visual tracking based on joint multi-feature histogram by integrating particle filter and mean shift’, Optik – Int. J. Light Electron Opt., 2015, 126, (15), pp. 14491456, doi: 10.1016/j.ijleo.2015.04.031.
        . Optik – Int. J. Light Electron Opt. , 15 , 1449 - 1456
    14. 14)
      • Y. Sun , M. Ding .
        14. Sun, Y., Ding, M.: ‘Route planning based on gradient-field quantum genetic algorithm model’, J. Softw., 2013, 8, (10), pp. 25112516, doi: 10.4304/jsw.8.10.2511-2516.
        . J. Softw. , 10 , 2511 - 2516
    15. 15)
      • Y. Wu , J.W. Li , M.H. Yang .
        15. Wu, Y., Li, J.W., Yang, M.H.: ‘Online object tracking: a benchmark’. IEEE Conf. on Computer Vision and Pattern Recognition, 2013, pp. 24115418, doi: 10.1109/CVPR.2013.312.
        . IEEE Conf. on Computer Vision and Pattern Recognition , 2411 - 5418
    16. 16)
      • D. Comaniciu , V. Ramesh , P. Meer .
        16. Comaniciu, D., Ramesh, V., Meer, P.: ‘Kernel-based object tracking’, IEEE Trans. Pattern Anal. Mach. Intell., 2003, 25, (5), pp. 564575, doi: 10.1109/TPAMI.2003.1195991.
        . IEEE Trans. Pattern Anal. Mach. Intell. , 5 , 564 - 575
    17. 17)
      • M. Isard , A. Blake .
        17. Isard, M., Blake, A.: ‘CONDENSATION-conditional density propagation for visual tracking’, Int. J. Comput. Vis., 1998, 29, (1), pp. 528.
        . Int. J. Comput. Vis. , 1 , 5 - 28
    18. 18)
      • Z. Kalal , J. Matas , K. Mikolajczyk .
        18. Kalal, Z., Matas, J., Mikolajczyk, K.: ‘P-N learning: bootstrapping binary classifiers by structural constraints’. IEEE Conf. on Computer Vision and Pattern Recognition, 2010, vol. 238, no. 6, pp. 4956, doi: 10.1109/CVPR.2010.5540231.
        . IEEE Conf. on Computer Vision and Pattern Recognition , 6 , 49 - 56
    19. 19)
      • Z.Q. Wen , Z.G. Zeng , W.Q. Zhu .
        19. Wen, Z.Q., Zeng, Z.G., Zhu, W.Q.: ‘Kernel optimization strategy based on mean shift’. Int. Conf. on Fuzzy Systems and Knowledge Discovery, 2015, pp. 15771582, doi: 10.1109/FSKD.2015.7382180.
        . Int. Conf. on Fuzzy Systems and Knowledge Discovery , 1577 - 1582
    20. 20)
      • K.H. Han , J.H. Kim .
        20. Han, K.H., Kim, J.H.: ‘Genetic quantum algorithm and its application to combinatorial optimization problem’, Congr. Evol. Comput., 2000, 2, (2), pp. 13541360, doi: 10.1109/CEC.2000.870809.
        . Congr. Evol. Comput. , 2 , 1354 - 1360
    21. 21)
      • K.H. Han , J.H. Kim .
        21. Han, K.H., Kim, J.H.: ‘Quantum-inspired evolutionary algorithm for a class of combinatorial optimization’, IEEE Trans. Evol. Comput., 2002, 6, (6), pp. 580593, doi: 10.1109/TEVC.2002.804320.
        . IEEE Trans. Evol. Comput. , 6 , 580 - 593
    22. 22)
      • K.H. Han , J.H. Kim .
        22. Han, K.H., Kim, J.H.: ‘On setting the parameters of quantum-inspired evolutionary algorithm for practical applications’, Congr. Evol. Comput., 2003, 1, (3), pp. 178194, doi: 10.1109/CEC.2003.1299572.
        . Congr. Evol. Comput. , 3 , 178 - 194
    23. 23)
      • K.H. Han , J.H. Kim .
        23. Han, K.H., Kim, J.H.: ‘Quantum-inspired evolutionary algorithms with a new termination criterion, He gate, and two-phase scheme’, IEEE Trans. Evol. Comput., 2004, 8, (2), pp. 156169, doi: 10.1109/TEVC.2004.823467.
        . IEEE Trans. Evol. Comput. , 2 , 156 - 169
    24. 24)
      • Y.J. Wu , C. Gao , W.Y. Tang .
        24. Wu, Y.J., Gao, C., Tang, W.Y., et al: ‘An outage risk oriented dynamic distribution network recon-figuration methodology considering the effects of weather conditions on power line failure rate’, Electr. Mach. Power Syst., 2016, 44, (19), pp. 22242236, doi: 10.1080/15325008.2016.1219428.
        . Electr. Mach. Power Syst. , 19 , 2224 - 2236
    25. 25)
      • J.Y. Liu , H.X. Wang , Y.Y. Sun .
        25. Liu, J.Y., Wang, H.X., Sun, Y.Y., et al: ‘Real-coded quantum-inspired genetic algorithm-based BP neural network algorithm’, Math. Probl. Eng., 2015, 2015, pp. 110, doi: 10.1155/2015/571295.
        . Math. Probl. Eng. , 1 - 10
    26. 26)
      • Z.C. Ye , C.M. He .
        26. Ye, Z.C., He, C.M.: ‘Morphological neural network based on QGA for image restoration’, Appl. Mech. Mater., 2013, 280, pp. 13881391, doi: 10.4028/www.scientific.net/AMM.278-280.1388.
        . Appl. Mech. Mater. , 1388 - 1391
    27. 27)
      • J. Zhang , H. Li , Z. Tang .
        27. Zhang, J., Li, H., Tang, Z., et al: ‘Quantum genetic algorithm for adaptive image multi-thresholding segmentation’, Int. J. Comput. Appl. Technol., 2015, 51, (3), pp. 203211, doi: 10.1504/IJCAT.2015.069334.
        . Int. J. Comput. Appl. Technol. , 3 , 203 - 211
    28. 28)
      • S. Dey , S. Bhattacharyya , U. Maulik .
        28. Dey, S., Bhattacharyya, S., Maulik, U.: ‘Quantum inspired automatic clustering for multi-level image thresholding’. Int. Conf. on Computational Intelligence and Communication Networks, 2014, pp. 247251, doi: 10.1109/CICN.2014.64.
        . Int. Conf. on Computational Intelligence and Communication Networks , 247 - 251
    29. 29)
      • A. Amal , A. Osama , S. Usama .
        29. Amal, A., Osama, A., Usama, S.: ‘A framework for satellite image enhancement using quantum genetic and weighted IHS + wavelet fusion method’, Int. J. Adv. Comput. Sci. Appl., 2016, 7, (4), pp. 815.
        . Int. J. Adv. Comput. Sci. Appl. , 4 , 8 - 15
    30. 30)
      • H.X. Wang , J.H. Fan , Y. Li .
        30. Wang, H.X., Fan, J.H., Li, Y.: ‘Research of shoeprint image matching based on SIFT algorithm’, J. Comput. Methods Sci. Eng., 2016, 16, (2), pp. 349359, doi: 10.3233/JCM-160622.
        . J. Comput. Methods Sci. Eng. , 2 , 349 - 359
    31. 31)
      • K. Mu , F. Hui , X. Zhao .
        31. Mu, K., Hui, F., Zhao, X.: ‘Multiple vehicle detection and tracking in highway traffic surveillance video based on SIFT feature matching’, J. Inf. Process. Syst., 2016, 12, (2), pp. 183195.
        . J. Inf. Process. Syst. , 2 , 183 - 195
    32. 32)
      • T.R. Mazur , B.W. Fischervaluck , Y. Wang .
        32. Mazur, T.R., Fischervaluck, B.W., Wang, Y., et al: ‘SIFT-based dense pixel tracking on 0.35 T cine-MR images acquired during image-guided radiation therapy with application to gating optimization’, Med. Phys., 2016, 43, (1), pp. 279293, doi: 10.1118/1.4938096.
        . Med. Phys. , 1 , 279 - 293
    33. 33)
      • X. Cui , Q. Wu , J. Zhou .
        33. Cui, X., Wu, Q., Zhou, J.: ‘Online fragments-based scale invariant electro-optic tracking with SIFT’, Optik- Int. J. Light Electron Optics, 2015, 126, (18), pp. 17201725, doi: 10.1016/j.ijleo.2015.04.071.
        . Optik- Int. J. Light Electron Optics , 18 , 1720 - 1725
    34. 34)
      • K. Mikolajczyk , C. Schmid .
        34. Mikolajczyk, K., Schmid, C.: ‘A performance evaluation of local descriptors’, IEEE Trans. Pattern Anal. Mach. Intell., 2005, 27, (10), pp. 16151630, doi: 10.1109/CVPR.2003.1211478.
        . IEEE Trans. Pattern Anal. Mach. Intell. , 10 , 1615 - 1630
    35. 35)
      • C. Singh , K.P. Kaur .
        35. Singh, C., Kaur, K.P.: ‘A fast and efficient image retrieval system based on colour and texture features’, J. Vis. Commun. Image Represent., 2016, 41, pp. 225238, doi: 10.1016/j.jvcir.2016.10.002.
        . J. Vis. Commun. Image Represent. , 225 - 238
    36. 36)
      • M.F. Yahya , M.R. Arshad .
        36. Yahya, M.F., Arshad, M.R.: ‘Tracking of multiple markers based on colour for visual servo control in underwater docking’. IEEE Int. Conf. on Control System, Computing and Engineering, 2015, pp. 482487, doi: 10.1109/ICCSCE.2015.7482233.
        . IEEE Int. Conf. on Control System, Computing and Engineering , 482 - 487
    37. 37)
      • S. Siena , B.V.K.V. Kumar .
        37. Siena, S., Kumar, B.V.K.V.: ‘Detecting occlusion from colour information to improve visual tracking’. IEEE Int. Conf. on Acoustics, Speech and Signal Processing (ICASSP), 2016, pp. 11101114, doi: 10.1109/ICASSP.2016.7471848.
        . IEEE Int. Conf. on Acoustics, Speech and Signal Processing (ICASSP) , 1110 - 1114
    38. 38)
      • C. Xiao , W.J. Chen , H.L. Gao .
        38. Xiao, C., Chen, W.J., Gao, H.L.: ‘Object tracking algorithm based on HSV colour histogram and block-sparse representation’. Chinese Control Conf. (CCC), 2015, pp. 38263931, doi: 10.1109/ChiCC.2015.7260229.
        . Chinese Control Conf. (CCC) , 3826 - 3931
    39. 39)
      • S. Patil , K. Talele .
        39. Patil, S., Talele, K.: ‘Suspicious movement detection and tracking based on colour histogram, communication’, Inf. Comput. Technol., 2015, pp. 16, doi:10.1109/ICCICT.2015.7045698.
        . Inf. Comput. Technol. , 1 - 6
    40. 40)
      • S. Fazli , H.M. Pour , H. Bouzari .
        40. Fazli, S., Pour, H.M., Bouzari, H.: ‘Particle filter based object tracking with SIFT and colour feature’. Int. Conf. on Machine Vision, 2009, pp. 8993, doi: 10.1109/ICMV.2009.47.
        . Int. Conf. on Machine Vision , 89 - 93
    41. 41)
      • F. Gurkan , B. Gunsel , D. Kumlu .
        41. Gurkan, F., Gunsel, B., Kumlu, D.: ‘Head rotation classification using dense motion estimation and particle filter tracking’. Int. Conf. on Electrical and Electronics Engineering, 2015, pp. 197201, doi: 10.1109/ELECO.2015.7394573.
        . Int. Conf. on Electrical and Electronics Engineering , 197 - 201
    42. 42)
      • D. Lowe .
        42. Lowe, D.: ‘Distinctive image features from scale-Invariant Key-points’, Int. J. Comput. Vis., 2004, 60, (2), pp. 91110, doi: 10.1023/B:VISI.0000029664.99615.94.
        . Int. J. Comput. Vis. , 2 , 91 - 110
    43. 43)
      • X. Jia , H. Lu , M.H. Yang .
        43. Jia, X., Lu, H., Yang, M.H.: ‘Visual tracking via adaptive structural local sparse appearance model’. IEEE Conf. on Computer Vision and Pattern Recognition, 2012, vol. 157, no. 10, pp. 18221829, doi: 10.1109/CVPR.2012.6247880.
        . IEEE Conf. on Computer Vision and Pattern Recognition , 10 , 1822 - 1829
    44. 44)
      • E. Learned-Miller , L. Sevilla-Lara .
        44. Learned-Miller, E., Sevilla-Lara, L.: ‘Distribution fields for tracking’. IEEE Conf. on Computer Vision and Pattern Recognition, 2012, vol. 157, no. 10, pp. 19101917, doi: 10.1109/CVPR.2012.6247891.
        . IEEE Conf. on Computer Vision and Pattern Recognition , 10 , 1910 - 1917
    45. 45)
      • T. Zhang , B. Ghanem , S. Liu .
        45. Zhang, T., Ghanem, B., Liu, S., et al: ‘Robust visual tracking via multi-task sparse learning’. IEEE Conf. on Computer Vision and Pattern Recognition, 2012, vol. 157, no. 10, pp. 20422049, doi: 10.1109/CVPR.2012.6247908.
        . IEEE Conf. on Computer Vision and Pattern Recognition , 10 , 2042 - 2049
    46. 46)
      • B. Babenko , M.H. Yang , S. Belongie .
        46. Babenko, B., Yang, M.H., Belongie, S.: ‘Visual tracking with online multiple instance learning’. IEEE Conf. on Computer Vision and Pattern Recognition, 2009, vol. 33, no. 8, pp. 983990, doi: 10.1109/CVPR.2009.5206737.
        . IEEE Conf. on Computer Vision and Pattern Recognition , 8 , 983 - 990
    47. 47)
      • N. Wang , D.Y. Yeung .
        47. Wang, N., Yeung, D.Y.: ‘Learning a deep compact image representation for visual tracking’, Adv. Neural Inform. Process. Syst., 2013, 1, pp. 809817.
        . Adv. Neural Inform. Process. Syst. , 809 - 817
    48. 48)
      • S. Hare , A. Saffari , P.H.S. Torr .
        48. Hare, S., Saffari, A., Torr, P.H.S.: ‘Struck: structured output tracking with kernels’, IEEE Trans. Pattern Anal. Mach. Intell., 2011, 38, (10), pp. 20962109, doi: 10.1109/ICCV.2011.6126251.
        . IEEE Trans. Pattern Anal. Mach. Intell. , 10 , 2096 - 2109
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cvi.2017.0176
Loading

Related content

content/journals/10.1049/iet-cvi.2017.0176
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address