http://iet.metastore.ingenta.com
1887

Improvement of angular velocity and position estimation in gyro-free inertial navigation based on vision aid equipment

Improvement of angular velocity and position estimation in gyro-free inertial navigation based on vision aid equipment

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Computer Vision — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

In conventional navigation systems, inertial sensors consist of accelerometers and gyroscopes. These sensors suffer from in-built errors, accumulated drift and high-level noise sensitivity. The accurate gyroscopes are expensive and not suitable in cost-effective applications. To minimise such disadvantages, one solution is the combination of inertial sensors with different aiding sensors. To lower the cost, utilisation of redundant accelerometer structure as gyro-free inertial measurement unit (GFIMU) has been proposed. In this study, Gyro-Free navigation errors using four tri-axial accelerometers are illustrated. Compensation of errors in terms of angular velocity and position estimation is verified based on adding a simple gyroscope, inexpensive stereo cameras as well as creating an easy to use topological map. The topological map is easily created by means of scale-invariant feature transform method. The estimation of angular velocity is corrected on the basis of fusing the measurements from GFIMU and a simple gyroscope using unscented Kalman filter. The correction of position is performed by comparing the estimated position from GFIMU and observation of stereo cameras together with topological map. The results of the research show that the collaboration of GFIMU, stereo cameras and simple gyroscope will improve the robustness and accuracy of navigation, significantly.

References

    1. 1)
      • D. O. Sales , D. O. Correa , L. C. Fernandes .
        1. Sales, D. O., Correa, D. O., Fernandes, L. C., et al: ‘Adaptive finite state machine based visual autonomous navigation system’, Eng. Appl. Artif. Intell., 2014, 29, pp. 152162.
        . Eng. Appl. Artif. Intell. , 152 - 162
    2. 2)
      • P. Corke , J. Lobo , J. Dias .
        2. Corke, P., Lobo, J., Dias, J.: ‘An introduction to inertial and visual sensing’, Int. J. Robot. Res., 2007, 26, (6), pp. 519535.
        . Int. J. Robot. Res. , 6 , 519 - 535
    3. 3)
      • Z. Tian , L. Zhang , W. Chen .
        3. Tian, Z., Zhang, L., Chen, W.: ‘Improved algorithm for navigation of rescue robots in underground mines’, Comput. Electr. Eng., 2013, 39, (4), pp. 10881094.
        . Comput. Electr. Eng. , 4 , 1088 - 1094
    4. 4)
      • D. Kortenkamp , R. Bonasso , R. Murphy . (1991)
        4. Kortenkamp, D., Bonasso, R., Murphy, R.: ‘AI-based mobile robots: case studies of successful robot systems’ (The MIT Press, 1991), pp. 125140.
        .
    5. 5)
      • V. Krishnan .
        5. Krishnan, V.: ‘Measurement of angular velocity and linear acceleration using linear accelerometers’, J. Franklin Inst., 1965, 280, (4), pp. 307315.
        . J. Franklin Inst. , 4 , 307 - 315
    6. 6)
      • T. Williams , A. Pahadia , M. Petovello .
        6. Williams, T., Pahadia, A., Petovello, M., et al: ‘using accelerometer configuration to improve the performance of MEMS IMU: feasibility study with a pedestrian navigation application’. Proc. ION, Georgia, 2009.
        . Proc. ION
    7. 7)
      • J. Lu , P. Lin .
        7. Lu, J., Lin, P.: ‘State derivation of a 12-axis gyroscope-free inertial measurement unit’, Sensors, 2011, 11, (3), pp. 31453162.
        . Sensors , 3 , 3145 - 3162
    8. 8)
      • P. Schopp , L. Klingbeil , C. Peters .
        8. Schopp, P., Klingbeil, L., Peters, C., et al: ‘Design, geometry evaluation and calibration of a gyroscope-free inertial measurement unit’, Sens. Actuators, 2010, 162, (2), pp. 379387.
        . Sens. Actuators , 2 , 379 - 387
    9. 9)
      • C. Liu , S. Zhanga , S. Yua .
        9. Liu, C., Zhanga, S., Yua, S., et al: ‘Design and analysis of Gyro-free inertial measurement units with different configurations’, Sens. Actuators, 2014, 214, pp. 175186.
        . Sens. Actuators , 175 - 186
    10. 10)
      • H. Xu , Y. P. Shen .
        10. Xu, H., Shen, Y. P.: ‘Target tracking control of mobile robot in diversified manoeuvre modes with a low cost embedded vision system’, Ind. Robot, Int. J., 2013, 40, (3), pp. 275287.
        . Ind. Robot, Int. J. , 3 , 275 - 287
    11. 11)
      • S. D. Jones , I. Andersen .
        11. Jones, S. D., Andersen, I.: ‘Appearance based processes for visual navigation’. Proc. Fifth Int. Symp. Intelligent Robotic Systems (IEEE IROS), France, 1997.
        . Proc. Fifth Int. Symp. Intelligent Robotic Systems (IEEE IROS)
    12. 12)
      • Y. Matsumoto , M. Inaba , H. Inoue .
        12. Matsumoto, Y., Inaba, M., Inoue, H.: ‘View-based navigation using an omni-view sequence in a corridor environment’, Vis. Appl., 2003, 14, (2), pp. 121128.
        . Vis. Appl. , 2 , 121 - 128
    13. 13)
      • L. Maohai , W. Han , S. Lining .
        13. Maohai, L., Han, W., Lining, S., et al: ‘Robust omnidirectional mobile robot topological navigation system using omnidirectional vision’, Eng. Appl. Artif. Intell., 2013, 26, (8), pp. 19421952.
        . Eng. Appl. Artif. Intell. , 8 , 1942 - 1952
    14. 14)
      • R. Jefferson , N. Souza , G. Pessin .
        14. Jefferson, R., Souza, N., Pessin, G., et al: ‘Vision-based waypoint following using templates and artificial neural networks’, Neuro Comput., 2013, 107, pp. 7786.
        . Neuro Comput. , 77 - 86
    15. 15)
      • Z. Zhang .
        15. Zhang, Z.: ‘A flexible new technique for camera calibration’, IEEE Trans. Pattern Anal. Mach. Intell., 2001, 22, (11), pp. 13301334.
        . IEEE Trans. Pattern Anal. Mach. Intell. , 11 , 1330 - 1334
    16. 16)
      • M. Dehghani , M. Ahmadi , A. Khayatian .
        16. Dehghani, M., Ahmadi, M., Khayatian, A., et al: ‘Vision-based calibration of a hexa parallel robot’, Ind. Robot, Int. J., 2014, 41, (3), pp. 296310.
        . Ind. Robot, Int. J. , 3 , 296 - 310
    17. 17)
      • P. Cardou , J. Angeles .
        17. Cardou, P., Angeles, J.: ‘Estimating the angular velocity of a rigid body moving in the plane from tangential and centripetal acceleration measurements’, Multibody Syst. Dyn., 2008, 19, (4), pp. 383406.
        . Multibody Syst. Dyn. , 4 , 383 - 406
    18. 18)
      • B. Zappa , G. Legnani , A. Bogert .
        18. Zappa, B., Legnani, G., Bogert, A., et al: ‘On the number and placement of accelerometers for angular velocity and acceleration determination’, J. Dyn. Syst. Meas. Control, 2001, 123, (3), pp. 552554.
        . J. Dyn. Syst. Meas. Control , 3 , 552 - 554
    19. 19)
      • X. Wang , N. Cui , J. Guo .
        19. Wang, X., Cui, N., Guo, J.: ‘INS/VisNav/GPS relative navigation system for UAV’, Aerosp. Sci. Technol., 2013, 28, (1), pp. 242248.
        . Aerosp. Sci. Technol. , 1 , 242 - 248
    20. 20)
      • S. Park , C. Tan , J. Park .
        20. Park, S., Tan, C., Park, J.: ‘A scheme for improving the performance of a gyroscope-free inertial measurement unit’, Sens. Actuators, 2005, 121, (2), pp. 410420.
        . Sens. Actuators , 2 , 410 - 420
    21. 21)
      • D. Simon . (2006)
        21. Simon, D.: ‘Optimal state estimation, Kalman, H-infinity and nonlinear approaches’ (John Wiley & Sons, 2006, 3rd edn.), pp. 191199.
        .
    22. 22)
      • C. F. O'Donnell . (2007)
        22. O'Donnell, C. F.: ‘Inertial navigation: analysis and design’ (McGraw-Hill, 2007), pp. 5364.
        .
    23. 23)
      • N. Sadaghzadeh , J. Poshtan , A. Wagner .
        23. Sadaghzadeh, N., Poshtan, J., Wagner, A., et al: ‘Cascaded Kalman and particle filters for photogrammetry based gyroscope drift and robot estimation’, ISA Trans., 2013, 53, (2), pp. 524532.
        . ISA Trans. , 2 , 524 - 532
    24. 24)
      • G. Kottas , J. A. Hesch , S. L. Bowman .
        24. Kottas, G., Hesch, J. A., Bowman, S. L., et al: ‘On the consistency of vision-aided inertial navigation’, Exp. Robot., 2013, 88, pp. 303317.
        . Exp. Robot. , 303 - 317
    25. 25)
      • L. Chen , S. Wang , K. McDonald-Maier .
        25. Chen, L., Wang, S., McDonald-Maier, K., et al: ‘Towards autonomous localization and mapping of AUVs: a survey’, Int. J. Intell. Unmanned Syst., 2013, 2, (1), pp. 97120.
        . Int. J. Intell. Unmanned Syst. , 1 , 97 - 120
    26. 26)
      • P. Petkov , T. Slavov .
        26. Petkov, P., Slavov, T.: ‘Stochastic modelling of MEMS’, Inertial Sens., 2010, 10, (2), pp. 121134.
        . Inertial Sens. , 2 , 121 - 134
    27. 27)
      • F. Alhwarin , D. Wang , R. Durrant .
        27. Alhwarin, F., Wang, D., Durrant, R., et al: ‘Improved SIFT-features matching for object recognition’. BCS Int. Academic Conf. Visions of Computer Science, England, 2008.
        . BCS Int. Academic Conf. Visions of Computer Science
    28. 28)
      • A. Azeem , M. Sharif , J. Shah .
        28. Azeem, A., Sharif, M., Shah, J., et al: ‘Hexagonal scale invariant feature transform (H-SIFT) for facial feature extraction’, J. Appl. Res. Technol., 2015, 13, (3), pp. 402408.
        . J. Appl. Res. Technol. , 3 , 402 - 408
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cvi.2017.0128
Loading

Related content

content/journals/10.1049/iet-cvi.2017.0128
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address