Improvement of angular velocity and position estimation in gyro-free inertial navigation based on vision aid equipment

Improvement of angular velocity and position estimation in gyro-free inertial navigation based on vision aid equipment

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Computer Vision — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

In conventional navigation systems, inertial sensors consist of accelerometers and gyroscopes. These sensors suffer from in-built errors, accumulated drift and high-level noise sensitivity. The accurate gyroscopes are expensive and not suitable in cost-effective applications. To minimise such disadvantages, one solution is the combination of inertial sensors with different aiding sensors. To lower the cost, utilisation of redundant accelerometer structure as gyro-free inertial measurement unit (GFIMU) has been proposed. In this study, Gyro-Free navigation errors using four tri-axial accelerometers are illustrated. Compensation of errors in terms of angular velocity and position estimation is verified based on adding a simple gyroscope, inexpensive stereo cameras as well as creating an easy to use topological map. The topological map is easily created by means of scale-invariant feature transform method. The estimation of angular velocity is corrected on the basis of fusing the measurements from GFIMU and a simple gyroscope using unscented Kalman filter. The correction of position is performed by comparing the estimated position from GFIMU and observation of stereo cameras together with topological map. The results of the research show that the collaboration of GFIMU, stereo cameras and simple gyroscope will improve the robustness and accuracy of navigation, significantly.


    1. 1)
      • 1. Sales, D. O., Correa, D. O., Fernandes, L. C., et al: ‘Adaptive finite state machine based visual autonomous navigation system’, Eng. Appl. Artif. Intell., 2014, 29, pp. 152162.
    2. 2)
      • 2. Corke, P., Lobo, J., Dias, J.: ‘An introduction to inertial and visual sensing’, Int. J. Robot. Res., 2007, 26, (6), pp. 519535.
    3. 3)
      • 3. Tian, Z., Zhang, L., Chen, W.: ‘Improved algorithm for navigation of rescue robots in underground mines’, Comput. Electr. Eng., 2013, 39, (4), pp. 10881094.
    4. 4)
      • 4. Kortenkamp, D., Bonasso, R., Murphy, R.: ‘AI-based mobile robots: case studies of successful robot systems’ (The MIT Press, 1991), pp. 125140.
    5. 5)
      • 5. Krishnan, V.: ‘Measurement of angular velocity and linear acceleration using linear accelerometers’, J. Franklin Inst., 1965, 280, (4), pp. 307315.
    6. 6)
      • 6. Williams, T., Pahadia, A., Petovello, M., et al: ‘using accelerometer configuration to improve the performance of MEMS IMU: feasibility study with a pedestrian navigation application’. Proc. ION, Georgia, 2009.
    7. 7)
      • 7. Lu, J., Lin, P.: ‘State derivation of a 12-axis gyroscope-free inertial measurement unit’, Sensors, 2011, 11, (3), pp. 31453162.
    8. 8)
      • 8. Schopp, P., Klingbeil, L., Peters, C., et al: ‘Design, geometry evaluation and calibration of a gyroscope-free inertial measurement unit’, Sens. Actuators, 2010, 162, (2), pp. 379387.
    9. 9)
      • 9. Liu, C., Zhanga, S., Yua, S., et al: ‘Design and analysis of Gyro-free inertial measurement units with different configurations’, Sens. Actuators, 2014, 214, pp. 175186.
    10. 10)
      • 10. Xu, H., Shen, Y. P.: ‘Target tracking control of mobile robot in diversified manoeuvre modes with a low cost embedded vision system’, Ind. Robot, Int. J., 2013, 40, (3), pp. 275287.
    11. 11)
      • 11. Jones, S. D., Andersen, I.: ‘Appearance based processes for visual navigation’. Proc. Fifth Int. Symp. Intelligent Robotic Systems (IEEE IROS), France, 1997.
    12. 12)
      • 12. Matsumoto, Y., Inaba, M., Inoue, H.: ‘View-based navigation using an omni-view sequence in a corridor environment’, Vis. Appl., 2003, 14, (2), pp. 121128.
    13. 13)
      • 13. Maohai, L., Han, W., Lining, S., et al: ‘Robust omnidirectional mobile robot topological navigation system using omnidirectional vision’, Eng. Appl. Artif. Intell., 2013, 26, (8), pp. 19421952.
    14. 14)
      • 14. Jefferson, R., Souza, N., Pessin, G., et al: ‘Vision-based waypoint following using templates and artificial neural networks’, Neuro Comput., 2013, 107, pp. 7786.
    15. 15)
      • 15. Zhang, Z.: ‘A flexible new technique for camera calibration’, IEEE Trans. Pattern Anal. Mach. Intell., 2001, 22, (11), pp. 13301334.
    16. 16)
      • 16. Dehghani, M., Ahmadi, M., Khayatian, A., et al: ‘Vision-based calibration of a hexa parallel robot’, Ind. Robot, Int. J., 2014, 41, (3), pp. 296310.
    17. 17)
      • 17. Cardou, P., Angeles, J.: ‘Estimating the angular velocity of a rigid body moving in the plane from tangential and centripetal acceleration measurements’, Multibody Syst. Dyn., 2008, 19, (4), pp. 383406.
    18. 18)
      • 18. Zappa, B., Legnani, G., Bogert, A., et al: ‘On the number and placement of accelerometers for angular velocity and acceleration determination’, J. Dyn. Syst. Meas. Control, 2001, 123, (3), pp. 552554.
    19. 19)
      • 19. Wang, X., Cui, N., Guo, J.: ‘INS/VisNav/GPS relative navigation system for UAV’, Aerosp. Sci. Technol., 2013, 28, (1), pp. 242248.
    20. 20)
      • 20. Park, S., Tan, C., Park, J.: ‘A scheme for improving the performance of a gyroscope-free inertial measurement unit’, Sens. Actuators, 2005, 121, (2), pp. 410420.
    21. 21)
      • 21. Simon, D.: ‘Optimal state estimation, Kalman, H-infinity and nonlinear approaches’ (John Wiley & Sons, 2006, 3rd edn.), pp. 191199.
    22. 22)
      • 22. O'Donnell, C. F.: ‘Inertial navigation: analysis and design’ (McGraw-Hill, 2007), pp. 5364.
    23. 23)
      • 23. Sadaghzadeh, N., Poshtan, J., Wagner, A., et al: ‘Cascaded Kalman and particle filters for photogrammetry based gyroscope drift and robot estimation’, ISA Trans., 2013, 53, (2), pp. 524532.
    24. 24)
      • 24. Kottas, G., Hesch, J. A., Bowman, S. L., et al: ‘On the consistency of vision-aided inertial navigation’, Exp. Robot., 2013, 88, pp. 303317.
    25. 25)
      • 25. Chen, L., Wang, S., McDonald-Maier, K., et al: ‘Towards autonomous localization and mapping of AUVs: a survey’, Int. J. Intell. Unmanned Syst., 2013, 2, (1), pp. 97120.
    26. 26)
      • 26. Petkov, P., Slavov, T.: ‘Stochastic modelling of MEMS’, Inertial Sens., 2010, 10, (2), pp. 121134.
    27. 27)
      • 27. Alhwarin, F., Wang, D., Durrant, R., et al: ‘Improved SIFT-features matching for object recognition’. BCS Int. Academic Conf. Visions of Computer Science, England, 2008.
    28. 28)
      • 28. Azeem, A., Sharif, M., Shah, J., et al: ‘Hexagonal scale invariant feature transform (H-SIFT) for facial feature extraction’, J. Appl. Res. Technol., 2015, 13, (3), pp. 402408.

Related content

This is a required field
Please enter a valid email address