http://iet.metastore.ingenta.com
1887

access icon openaccess Two-person activity recognition using skeleton data

  • XML
    126.65234375Kb
  • PDF
    3.1224727630615234MB
  • HTML
    111.599609375Kb
Loading full text...

Full text loading...

/deliver/fulltext/iet-cvi/12/1/IET-CVI.2017.0118.html;jsessionid=4ilco2gu2579b.x-iet-live-01?itemId=%2fcontent%2fjournals%2f10.1049%2fiet-cvi.2017.0118&mimeType=html&fmt=ahah

References

    1. 1)
      • M. Aquilano , F. Cavallo , M. Bonaccorsi .
        1. Aquilano, M., Cavallo, F., Bonaccorsi, M., et al: ‘Ambient assisted living and ageing: preliminary results of RITA project’. 2012 Annual Int. Conf. IEEE Engineering in Medicine and Biology Society (EMBC), 2012, pp. 58235826.
        . 2012 Annual Int. Conf. IEEE Engineering in Medicine and Biology Society (EMBC) , 5823 - 5826
    2. 2)
      • N.M. Garcia , J.J.P.C. Rodrigues . (2015)
        2. Garcia, N.M., Rodrigues, J.J.P.C.: ‘Ambient assisted living’ (CRC Press, 2015).
        .
    3. 3)
      • A. Laitinen , M. Niemela , J. Pirhonen .
        3. Laitinen, A., Niemela, M., Pirhonen, J.: ‘Social robotics, elderly care, and human dignity: a recognition-theoretical approach’, 2016.
        .
    4. 4)
      • D. Portugal , P. Trindade , E. Christodoulou .
        4. Portugal, D., Trindade, P., Christodoulou, E., et al: ‘On the development of a service robot for social interaction with the elderly’, 2015.
        .
    5. 5)
      • A. Cesta , G. Cortellessa , R. De Benedictis .
        5. Cesta, A., Cortellessa, G., De Benedictis, R., et al: ‘Supporting active and healthy ageing by exploiting a telepresence robot and personalized delivery of information’. Int. Conf. Intelligent Software Methodologies, Tools, and Techniques, 2015, pp. 586597.
        . Int. Conf. Intelligent Software Methodologies, Tools, and Techniques , 586 - 597
    6. 6)
      • L. Fiorini , R. Esposito , M. Bonaccorsi .
        6. Fiorini, L., Esposito, R., Bonaccorsi, M., et al: ‘Enabling personalised medical support for chronic disease management through a hybrid robot-cloud approach’, Auton. Robots, 2017, 41, (5), pp. 12631276.
        . Auton. Robots , 5 , 1263 - 1276
    7. 7)
      • Ö. Yürür , C.H. Liu , Z. Sheng .
        7. Yürür, Ö., Liu, C.H., Sheng, Z., et al: ‘Context-awareness for mobile sensing: a survey and future directions’, IEEE Commun. Surv. Tutor., 2016, 18, (1), pp. 6893.
        . IEEE Commun. Surv. Tutor. , 1 , 68 - 93
    8. 8)
      • M. Vrigkas , C. Nikou , I.A. Kakadiaris .
        8. Vrigkas, M., Nikou, C., Kakadiaris, I.A.: ‘A review of human activity recognition methods’, Front. Robot. AI, 2015, 2, p. 28.
        . Front. Robot. AI , 28
    9. 9)
      • Y. Dong , J. Scisco , M. Wilson .
        9. Dong, Y., Scisco, J., Wilson, M., et al: ‘Detecting periods of eating during free-living by tracking wrist motion’, IEEE J. Biomed. Health Inf., 2014, 18, (4), pp. 12531260.
        . IEEE J. Biomed. Health Inf. , 4 , 1253 - 1260
    10. 10)
      • Y. Xiao , Z. Zhang , A. Beck .
        10. Xiao, Y., Zhang, Z., Beck, A., et al: ‘Human–robot interaction by understanding upper body gestures’, Presence, Teleoperators Virtual Environ., 2014, 23, (2), pp. 133154.
        . Presence, Teleoperators Virtual Environ. , 2 , 133 - 154
    11. 11)
      • R.W. Picard . (1997)
        11. Picard, R.W.: ‘Affective computing’ (MIT Press, Cambridge, MA, USA, 1997).
        .
    12. 12)
      • A. Vinciarelli , A.S. Pentland .
        12. Vinciarelli, A., Pentland, A.S.: ‘New social signals in a new interaction world: the next frontier for social signal processing’, IEEE Syst. Man Cybern. Mag., 2015, 1, (2), pp. 1017.
        . IEEE Syst. Man Cybern. Mag. , 2 , 10 - 17
    13. 13)
      • M. Vázquez , A. Steinfeld , S.E. Hudson .
        13. Vázquez, M., Steinfeld, A., Hudson, S.E.: ‘Parallel detection of conversational groups of free-standing people and tracking of their lower-body orientation’. 2015 IEEE/RSJ Int. Conf. Intelligent Robots and Systems (IROS), 2015, pp. 30103017.
        . 2015 IEEE/RSJ Int. Conf. Intelligent Robots and Systems (IROS) , 3010 - 3017
    14. 14)
      • R.D. Adelman , L.L. Tmanova , D. Delgado .
        14. Adelman, R.D., Tmanova, L.L., Delgado, D., et al: ‘Caregiver burden: a clinical review’, Jama, 2014, 311, (10), pp. 10521060.
        . Jama , 10 , 1052 - 1060
    15. 15)
      • V. Kellokumpu , M. Pietikäinen , J. Heikkilä .
        15. Kellokumpu, V., Pietikäinen, M., Heikkilä, J.: ‘Human activity recognition using sequences of postures’. MVA, 2005, pp. 570573.
        . MVA , 570 - 573
    16. 16)
      • G. Willems , T. Tuytelaars , L. Van Gool .
        16. Willems, G., Tuytelaars, T., Van Gool, L.: ‘An efficient dense and scale-invariant spatio-temporal interest point detector’. European Conf. Computer Vision, 2008, pp. 650663.
        . European Conf. Computer Vision , 650 - 663
    17. 17)
      • J.K. Aggarwal , M.S. Ryoo .
        17. Aggarwal, J.K., Ryoo, M.S.: ‘Human activity analysis: a review’, ACM Comput. Surv. (CSUR), 2011, 43, (3), p. 16.
        . ACM Comput. Surv. (CSUR) , 3 , 16
    18. 18)
      • D. Weinland , R. Ronfard , E. Boyer .
        18. Weinland, D., Ronfard, R., Boyer, E.: ‘A survey of vision-based methods for action representation, segmentation and recognition’, Comput. Vis. Image Underst., 2011, 115, (2), pp. 224241.
        . Comput. Vis. Image Underst. , 2 , 224 - 241
    19. 19)
      • J. Shotton , T. Sharp , A. Kipman .
        19. Shotton, J., Sharp, T., Kipman, A., et al: ‘Real-time human pose recognition in parts from single depth images’, Commun. ACM, 2013, 56, (1), pp. 116124.
        . Commun. ACM , 1 , 116 - 124
    20. 20)
      • G. Turchetti , S. Micera , F. Cavallo .
        20. Turchetti, G., Micera, S., Cavallo, F., et al: ‘Technology and innovative services’, IEEE Pulse, 2011, 2, (2), pp. 2735.
        . IEEE Pulse , 2 , 27 - 35
    21. 21)
      • F. Cavallo , M. Aquilano , M. Bonaccorsi .
        21. Cavallo, F., Aquilano, M., Bonaccorsi, M., et al: ‘Multidisciplinary approach for developing a new robotic system for domiciliary assistance to elderly people’. 2011 Annual Int. Conf. IEEE Engineering in Medicine and Biology Society, 2011, pp. 53275330.
        . 2011 Annual Int. Conf. IEEE Engineering in Medicine and Biology Society , 5327 - 5330
    22. 22)
      • A. Manzi , F. Cavallo , P. Dario . (2016)
        22. Manzi, A., Cavallo, F., Dario, P.: ‘A 3D human posture approach for activity recognition based on depth camera’ (Springer International Publishing, Cham, 2016), pp. 432447.
        .
    23. 23)
      • 23. ISR-UoL 3D Social Activity Dataset. Available at https://lcas.lincoln.ac.uk/wp/isr-uol-3d-social-activity-dataset, accessed June 2017.
        .
    24. 24)
      • K. Yun , J. Honorio , D. Chattopadhyay .
        24. Yun, K., Honorio, J., Chattopadhyay, D., et al: ‘Two-person interaction detection using body-pose features and multiple instance learning’. 2012 IEEE Computer Society Conf. Computer Vision and Pattern Recognition Workshops (CVPRW), 2012, pp. 2835.
        . 2012 IEEE Computer Society Conf. Computer Vision and Pattern Recognition Workshops (CVPRW) , 28 - 35
    25. 25)
      • O.D. Lara , M.A. Labrador .
        25. Lara, O.D., Labrador, M.A.: ‘A survey on human activity recognition using wearable sensors’, IEEE Commun. Surv. Tutor., 2013, 15, (3), pp. 11921209.
        . IEEE Commun. Surv. Tutor. , 3 , 1192 - 1209
    26. 26)
      • X. Su , H. Tong , P. Ji .
        26. Su, X., Tong, H., Ji, P.: ‘Activity recognition with smartphone sensors’, Tsinghua Sci. Technol., 2014, 19, (3), pp. 235249.
        . Tsinghua Sci. Technol. , 3 , 235 - 249
    27. 27)
      • J.K. Aggarwal , L. Xia .
        27. Aggarwal, J.K., Xia, L.: ‘Human activity recognition from 3D data: a review’, Pattern Recognit. Lett., 2014, 48, pp. 7080.
        . Pattern Recognit. Lett. , 70 - 80
    28. 28)
      • J. Sung , C. Ponce , B. Selman .
        28. Sung, J., Ponce, C., Selman, B., et al: ‘Unstructured human activity detection from RGBD images’. 2012 IEEE Int. Conf. Robotics and Automation (ICRA), 2012, pp. 842849.
        . 2012 IEEE Int. Conf. Robotics and Automation (ICRA) , 842 - 849
    29. 29)
      • H.S. Koppula , R. Gupta , A. Saxena .
        29. Koppula, H.S., Gupta, R., Saxena, A.: ‘Learning human activities and object affordances from RGB-D videos’, Int. J. Robot. Res., 2013, 32, (8), pp. 951970.
        . Int. J. Robot. Res. , 8 , 951 - 970
    30. 30)
      • B. Ni , G. Wang , P. Moulin .
        30. Ni, B., Wang, G., Moulin, P.: ‘RGBD-HuDaAct: a color-depth video database for human daily activity recognition’. Consumer Depth Cameras for Computer Vision, 2013, pp. 193208.
        . Consumer Depth Cameras for Computer Vision , 193 - 208
    31. 31)
      • J. Wang , Z. Liu , Y. Wu .
        31. Wang, J., Liu, Z., Wu, Y., et al: ‘Mining actionlet ensemble for action recognition with depth cameras’. 2012 IEEE Conf. Computer Vision and Pattern Recognition (CVPR), 2012, pp. 12901297.
        . 2012 IEEE Conf. Computer Vision and Pattern Recognition (CVPR) , 1290 - 1297
    32. 32)
      • M.S. Ryoo , L. Matthies .
        32. Ryoo, M.S., Matthies, L.: ‘First-person activity recognition: what are they doing to me?’. Proc. IEEE Conf. Computer Vision and Pattern Recognition, 2013, pp. 27302737.
        . Proc. IEEE Conf. Computer Vision and Pattern Recognition , 2730 - 2737
    33. 33)
      • L. Chen , H. Wei , J. Ferryman .
        33. Chen, L., Wei, H., Ferryman, J.: ‘A survey of human motion analysis using depth imagery’, Pattern Recognit. Lett., 2013, 34, (15), pp. 19952006.
        . Pattern Recognit. Lett. , 15 , 1995 - 2006
    34. 34)
      • J. Rehg , G. Abowd , A. Rozga .
        34. Rehg, J., Abowd, G., Rozga, A., et al: ‘Decoding children's social behavior’. Proc. IEEE Conf. Computer Vision and Pattern Recognition, 2013, pp. 34143421.
        . Proc. IEEE Conf. Computer Vision and Pattern Recognition , 3414 - 3421
    35. 35)
      • Y. Kong , Y. Jia , Y. Fu .
        35. Kong, Y., Jia, Y., Fu, Y.: ‘Learning human interaction by interactive phrases’. Computer Vision – ECCV 2012, 2012, pp. 300313.
        . Computer Vision – ECCV 2012 , 300 - 313
    36. 36)
      • M. Raptis , L. Sigal .
        36. Raptis, M., Sigal, L.: ‘Poselet key-framing: a model for human activity recognition’. Proc. 2013 IEEE Conf. Computer Vision and Pattern Recognition, CVPR ‘13, Washington, DC, USA, 2013, pp. 26502657.
        . Proc. 2013 IEEE Conf. Computer Vision and Pattern Recognition, CVPR ‘13 , 2650 - 2657
    37. 37)
      • D.-A. Huang , K.M. Kitani .
        37. Huang, D.-A., Kitani, K.M.: ‘Action-reaction: forecasting the dynamics of human interaction’. ECCV (7), 2014, pp. 489504.
        . ECCV (7) , 489 - 504
    38. 38)
      • S. Blunsden , R.B. Fisher .
        38. Blunsden, S., Fisher, R.B.: ‘The behave video dataset: ground truthed video for multi-person behavior classification’, Ann. BMVA, 2010, 4, (1–12), p. 4.
        . Ann. BMVA , 4
    39. 39)
      • L.D. Lopez , P.J. Reschke , J.M. Knothe .
        39. Lopez, L.D., Reschke, P.J., Knothe, J.M., et al: ‘Postural communication of emotion: perception of distinct poses of five discrete emotions’, Front. Psychol., 2017, 8, p. 710. PMC. Web. 13 Oct. 2017.
        . Front. Psychol. , 710
    40. 40)
      • Z. Cheng , L. Qin , Q. Huang .
        40. Cheng, Z., Qin, L., Huang, Q., et al: ‘Recognizing human group action by layered model with multiple cues’, Neurocomputing, 2014, 136, pp. 124135.
        . Neurocomputing , 124 - 135
    41. 41)
      • L.L. Presti , M.L. Cascia .
        41. Presti, L.L., Cascia, M.L.: ‘3D skeleton-based human action classification: a survey’, Pattern Recognit., 2016, 53, pp. 130147.
        . Pattern Recognit. , 130 - 147
    42. 42)
      • M.S. Ibrahim , S. Muralidharan , Z. Deng .
        42. Ibrahim, M.S., Muralidharan, S., Deng, Z., et al: ‘A hierarchical deep temporal model for group activity recognition’, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, 2015, pp. 19711980. doi: 10.1109/CVPR.2016.217.
        . 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) , 1971 - 1980
    43. 43)
      • W. Choi , K. Shahid , S. Savarese .
        43. Choi, W., Shahid, K., Savarese, S.: ‘What are they doing?: collective activity classification using spatio-temporal relationship among people’. 2009 IEEE 12th Int. Conf. Computer Vision Workshops (ICCV Workshops), 2009, pp. 12821289.
        . 2009 IEEE 12th Int. Conf. Computer Vision Workshops (ICCV Workshops) , 1282 - 1289
    44. 44)
      • K.N. Tran , A. Gala , I.A. Kakadiaris .
        44. Tran, K.N., Gala, A., Kakadiaris, I.A., et al: ‘Activity analysis in crowded environments using social cues for group discovery and human interaction modeling’, Pattern Recognit. Lett., 2014, 44, pp. 4957.
        . Pattern Recognit. Lett. , 49 - 57
    45. 45)
      • A. Shahroudy , J. Liu , T.-T. Ng .
        45. Shahroudy, A., Liu, J., Ng, T.-T., et al: ‘NTU RGB + D: a large scale dataset for 3D human activity analysis’. Proc. IEEE Conf. Computer Vision and Pattern Recognition, 2016, pp. 10101019.
        . Proc. IEEE Conf. Computer Vision and Pattern Recognition , 1010 - 1019
    46. 46)
      • 46. SBU Kinect interaction dataset v2.0. Available at http://www3.cs.stonybrook.edu/kyun/research/kinect_interaction/. accessed June 2017.
        .
    47. 47)
      • C. Coppola , D.R. Faria , U. Nunes .
        47. Coppola, C., Faria, D.R., Nunes, U., et al: ‘Social activity recognition based on probabilistic merging of skeleton features with proximity priors from RGB-D data’. 2016 IEEE/RSJ Int. Conf. Intelligent Robots and Systems (IROS, 2016, pp. 50555061.
        . 2016 IEEE/RSJ Int. Conf. Intelligent Robots and Systems (IROS , 5055 - 5061
    48. 48)
      • D.R. Faria , C. Premebida , U. Nunes .
        48. Faria, D.R., Premebida, C., Nunes, U.: ‘A probabilistic approach for human everyday activities recognition using body motion from RGB-D images’. 23rd IEEE Int. Symp. Robot and Human Interactive Communication, 2014 RO-MAN, 2014, pp. 732737.
        . 23rd IEEE Int. Symp. Robot and Human Interactive Communication, 2014 RO-MAN , 732 - 737
    49. 49)
      • E. Cippitelli , S. Gasparrini , E. Gambi .
        49. Cippitelli, E., Gasparrini, S., Gambi, E., et al: ‘A human activity recognition system using skeleton data from RGBD sensors’, Comput. Intell. Neurosci., 2016, 2016, p. 21.
        . Comput. Intell. Neurosci. , 21
    50. 50)
      • S. Gaglio , G.L. Re , M. Morana .
        50. Gaglio, S., Re, G.L., Morana, M.: ‘Human activity recognition process using 3D posture data’, IEEE Trans. Hum.–Mach. Syst., 2015, 45, (5), pp. 586597.
        . IEEE Trans. Hum.–Mach. Syst. , 5 , 586 - 597
    51. 51)
      • J. Shan , S. Akella .
        51. Shan, J., Akella, S.: ‘3D human action segmentation and recognition using pose kinetic energy’. 2014 IEEE Int. Workshop on Advanced Robotics and its Social Impacts, 2014, pp. 6975.
        . 2014 IEEE Int. Workshop on Advanced Robotics and its Social Impacts , 69 - 75
    52. 52)
      • J. MacQueen .
        52. MacQueen, J.: ‘Some methods for classification and analysis of multivariate observations’. Proc. Fifth Berkeley Symp. Mathematical Statistics and Probability, Volume 1: Statistics, Berkeley, CA, 1967, pp. 281297.
        . Proc. Fifth Berkeley Symp. Mathematical Statistics and Probability, Volume 1: Statistics , 281 - 297
    53. 53)
      • D. Pelleg , A.W. Moore .
        54. Pelleg, D., Moore, A.W.: ‘X-means: extending k-means with efficient estimation of the number of clusters’. 17th Int. Conf. Machine Learning, 2000, pp. 727734.
        . 17th Int. Conf. Machine Learning , 727 - 734
    54. 54)
      • I.H. Witten , E. Frank , M.A. Hall . (2011)
        55. Witten, I.H., Frank, E., Hall, M.A.: ‘Data mining: practical machine learning tools and techniques’ (Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2011, 3rd edn.).
        .
    55. 55)
      • M. Hall , E. Frank , G. Holmes .
        56. Hall, M., Frank, E., Holmes, G., et al: ‘The Weka data mining software: an update’, SIGKDD Explor. Newsl., 2009, 11, (1), pp. 1018.
        . SIGKDD Explor. Newsl. , 1 , 10 - 18
    56. 56)
      • B. Jiang , B. Martinez , M.F. Valstar .
        57. Jiang, B., Martinez, B., Valstar, M.F., et al: ‘Decision level fusion of domain specific regions for facial action recognition’. 2014 22nd Int. Conf. Pattern Recognition (ICPR), 2014, pp. 17761781.
        . 2014 22nd Int. Conf. Pattern Recognition (ICPR) , 1776 - 1781
    57. 57)
      • D. Aha , D. Kibler .
        58. Aha, D., Kibler, D.: ‘Instance-based learning algorithms’, Mach. Learn., 1991, 6, pp. 3766.
        . Mach. Learn. , 37 - 66
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cvi.2017.0118
Loading

Related content

content/journals/10.1049/iet-cvi.2017.0118
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address