access icon free Collaborative design of a telerehabilitation system enabling virtual second opinion based on fuzzy logic

Here, the authors present a low cost telerehabilitation system made up of a commercial red–green–blue depth (RGB-D) camera and a web-based platform. The authors goal is to monitor and assess subject movement providing acceptable and usable at-home remote rehabilitation services without the presence of a clinician. Clinical goals, defined by physiotherapists, are firstly translated into motion analysis features. A Takagi Sugeno fuzzy inference system (FIS) is then proposed to evaluate and combine these features into scores. In this stage, the ‘collaborative design’ paradigm is used in depth and complete manner: the contribution of the clinician is not limited only to the rules definition but enters in the core of the evaluation algorithm through the definition of the fuzzy rules. A case study on low back pain rehabilitation involving 40 subjects, 5 exercises, and 4 physiotherapists is then presented to the effectiveness of the proposed system. Results of the validation of the system aimed at the assessment of the reliability of the proposed approach show high correlations between clinician evaluation and FIS scores. In this scenario, due to the high correlation, each FIS could represent a virtual alter-ego of the physiotherapist which enable a real time and free second opinion.

Inspec keywords: fuzzy reasoning; patient rehabilitation; fuzzy logic; biomechanics; image sensors; virtual reality; image motion analysis; biomedical telemetry; medical image processing; biomedical optical imaging; telemedicine

Other keywords: collaborative design; commercial red-green-blue depth camera; usable at-home remote rehabilitation services; Takagi Sugeno fuzzy inference system; virtual second opinion; motion analysis features; low back pain rehabilitation; clinical goals; clinician evaluation; free second opinion; fuzzy rules; low cost telerehabilitation system; evaluation algorithm; FIS scores; physiotherapists; subject movement; web-based platform; fuzzy logic

Subjects: Computer vision and image processing techniques; Patient diagnostic methods and instrumentation; Formal logic; Optical, image and video signal processing; Biology and medical computing; Optical and laser radiation (medical uses); Physics of body movements; Biomedical communication; Optical and laser radiation (biomedical imaging/measurement); Virtual reality; Telemetry

References

    1. 1)
      • 5. Afsar, P., Cortez, P., Santos, H.: ‘Automatic visual detection of human behavior: a review from 2000 to 2014’, Expert Syst. Appl., 2015, 42, (20), pp. 69356956.
    2. 2)
      • 3. Yan, H., Huo, H., Xu, Y., et al: ‘Wireless sensor network based e-health system: implementation and experimental results’, IEEE Trans. Consum. Electron., 2010, 56, (4), pp. 22882295.
    3. 3)
      • 12. Yi, Y., Zheng, Z., Lin, M.: ‘Realistic action recognition with salient foreground trajectories’, Expert Syst. Appl., 2017, 75, (1), pp. 4455.
    4. 4)
      • 19. Lin, J.F.S., Kulic, D.: ‘Online segmentation of human motion for automated rehabilitation exercise analysis’, IEEE Trans. Neural Syst. Rehabil. Eng., 2014, 22, (1), pp. 168180.
    5. 5)
      • 34. Barriga, A., Conejero, J.M., Hernández, J., et al: ‘A vision-based approach for building telecare and telerehabilitation services’, Sensors, 2016, 16, (10), pp. 17281747.
    6. 6)
      • 15. Faraki, M., Palhang, M., Sanderson, C.: ‘Log-Euclidean bag of words for human action recognition’, IET Comput. Vis., 2015, 9, (3), pp. 331339.
    7. 7)
      • 28. Ruiz-Fernandez, D., Marín-Alonso, O., Soriano-Paya, A., et al: ‘Efisiotrack: a telerehabilitation environment based on motion recognition using accelerometry’, Sci. World J., 2014, 2014, pp. 111.
    8. 8)
      • 10. Chun, S., Lee, C.S.: ‘Human action recognition using histogram of motion intensity and direction from multiple views’, IET Comput. Vis., 2016, 10, (4), pp. 250256.
    9. 9)
      • 16. Spinsante, S., Gambi, E.: ‘Remote health monitoring by OSGi technology and digital TV integration’, IEEE Trans. Consum. Electron., 2012, 58, (4), pp. 14341441.
    10. 10)
      • 11. Selmi, M., El-Yacoubi, M.A., Dorizzi, B.: ‘Two-layer discriminative model for human activity recognition’, IET Comput. Vis., 2016, 10, (4), pp. 273278.
    11. 11)
      • 24. van Diest, M., Stegenga, J., Wörtche, H.J., et al: ‘Suitability of kinect for measuring whole body movement patterns during exergaming’, J. Biomech., 2014, 47, (12), pp. 29252932.
    12. 12)
      • 23. Zhou, H., Hu, H.: ‘Human motion tracking for rehabilitation – a survey’, Biomed. Signal Proc. Control, 2008, 3, (1), pp. 118.
    13. 13)
      • 35. Zhang, Z., Fang, Q., Gu, X.: ‘Fuzzy inference system based automatic brunnstrom stage classification for upper-extremity rehabilitation’, Expert Syst. Appl., 2014, 41, (4), Part 2, pp. 19731980.
    14. 14)
      • 18. Cranen, K., Groothuis-Oudshoorn, G.M.C., Vollenbroek-Hutten, M.R.M., et al: ‘Toward patient-centered telerehabilitation design: understanding chronic pain patients’ preferences for web-based exercise telerehabilitation using a discrete choice experiment’, J. Med. Internet Res., 2017, 19, (1), p. e26.
    15. 15)
      • 4. Wang, J., Zhang, Z., Li, B., et al: ‘An enhanced fall detection system for elderly person monitoring using consumer home networks’, IEEE Trans. Consum. Electron., 2014, 60, (1), pp. 2329.
    16. 16)
      • 40. Xu, X., McGorry, R.W.: ‘The validity of the first and second generation microsoft kinect™ for identifying joint center locations during static postures’, Appl. Ergon., 2015, 49, pp. 4754.
    17. 17)
      • 27. Glonek, G., Wojciechowski, A.: ‘Kinect and IMU sensors imprecisions compensation method for human limbs tracking’ (Springer International Publishing, Cham, 2016), pp. 316328.
    18. 18)
      • 9. Gaglio, S., Re, G.L., Morana, M.: ‘Human activity recognition process using 3-d posture data’, IEEE Trans. Hum. Mach. Syst., 2015, 45, (5), pp. 586597.
    19. 19)
      • 20. Fernandez de Dios, P., Chung, P.W.H., Meng, Q.: ‘Landmark-based methods for temporal alignment of human motions’, IEEE Comput. Intell. Mag., 2014, 9, (2), pp. 2937.
    20. 20)
      • 7. Khan, Z.A., Sohn, W.: ‘Abnormal human activity recognition system based on r-transform and kernel discriminant technique for elderly home care’, IEEE Trans. Consum. Electron., 2011, 57, (4), pp. 18431850.
    21. 21)
      • 30. González-Ortega, D, Díaz-Pernas, F.J., Martínez-Zarzuela, M., et al: ‘A kinect-based system for cognitive rehabilitation exercises monitoring’, Comput. Methods Programs Biomed., 2014, 113, (2), pp. 620631.
    22. 22)
      • 31. Li, S., Pathirana, P.N., Galea, M.P.: ‘Motion trajectory analysis for evaluating the performance of functional upper extremity tasks in daily living: a pilot study’. 2015 37th Annual Int. Conf. IEEE Engineering in Medicine and Biology Society (EMBC), August 2015, pp. 27012704.
    23. 23)
      • 21. Palazzo, C., Klinger, E., Dorner, V., et al: ‘Barriers to home-based exercise program adherence with chronic low back pain: patient expectations regarding new technologies’, Ann. Phys. Rehabil. Med., 2016, 59, (2), pp. 107113.
    24. 24)
      • 25. González, I., López-Nava, I.H., Fontecha, J., et al: ‘Comparison between passive vision-based system and a wearable inertial-based system for estimating temporal gait parameters related to the gaitrite electronic walkway’, J. Biomed. Inf., 2016, 62, pp. 210223.
    25. 25)
      • 39. Capecci, M, Ceravolo, M.G., Ferracuti, F, et al: ‘Accuracy evaluation of the kinect v2 sensor during dynamic movements in a rehabilitation scenario’. 38th Annual Int. Conf. Engineering in Medicine and Biology Society (EMBC), 2016, pp. 54095412.
    26. 26)
      • 17. Hung, C.H., Bai, Y.W., Tsai, R.Y.: ‘Design of blood pressure measurement with a health management system for the aged’, IEEE Trans. Consum. Electron., 2012, 58, (2), pp. 619625.
    27. 27)
      • 13. Yoon, S.M., Kuijper, A.: ‘Human action recognition based on skeleton splitting’, Expert Syst. Appl., 2013, 40, (17), pp. 68486855.
    28. 28)
      • 22. Winters, J.M., Yu, W., Winters, J.M.: ‘Wearable sensors and telerehabilitation’, IEEE Eng. Med. Biol. Mag., 2003, 22, (3), pp. 5665.
    29. 29)
      • 8. Jalal, A., Uddin, M.Z., Kim, T.S.: ‘Depth video-based human activity recognition system using translation and scaling invariant features for life logging at smart home’, IEEE Trans. Consum. Electron., 2012, 58, (3), pp. 863871.
    30. 30)
      • 32. Hu, M.C., Chen, C.W., Cheng, W.H., et al: ‘Real-time human movement retrieval and assessment with kinect sensor’, IEEE Trans. Cybern., 2015, 45, (4), pp. 742753.
    31. 31)
      • 6. Elloumi, S., Cosar, S., Pusiol, G., et al: ‘Unsupervised discovery of human activities from long-time videos’, IET Comput. Vis., 2015, 9, (4), pp. 522530.
    32. 32)
      • 26. Kim, C.Y., Hong, J.S., Chun, K.J.: ‘Validation of feasibility of two depth sensor-based microsoft kinect cameras for human abduction-adduction motion analysis’, Int. J. Prec. Eng. Manuf., 2016, 17, (9), pp. 12091214.
    33. 33)
      • 36. Capecci, M., Ceravolo, M.G., D'Orazio, F., et al: ‘A tool for home-based rehabilitation allowing for clinical evaluation in a visual markerless scenario’. 2015 37th Annual Int. Conf. IEEE Engineering in Medicine and Biology Society (EMBC), August 2015, pp. 80348037.
    34. 34)
      • 41. Capecci, M., Ceravolo, M.G., Ferracuti, F., et al: ‘Physical rehabilitation exercises assessment based on hidden semimarkov model by kinect v2’. 2016 IEEE-EMBS Int. Conf. Biomedical and Health Informatics (BHI), February 2016, pp. 256259.
    35. 35)
      • 33. Su, C.-J., Chiang, C.-Y., Huang, J.-Y.: ‘Kinect-enabled homebased rehabilitation system using dynamic time warping and fuzzy logic’, Appl. Soft Comput., 2014, 22, pp. 652666.
    36. 36)
      • 1. WHO: ‘World health statistics 2015’. Tech. Rep., World Health Organization, 2015.
    37. 37)
      • 38. Azimi, M.: ‘Skeletal joint smoothing white paper’, 2012.
    38. 38)
      • 14. Chaaraoui, A.A., Padilla-López, J.R., Climent-Pérez, P., et al: ‘Evolutionary joint selection to improve human action recognition with RGB-D devices’, Expert Syst. Appl., 2014, 41, (3), pp. 786794.
    39. 39)
      • 42. Venkatesh, V., Thong, J.Y.L., Xu, X.: ‘Consumer acceptance and use of information technology: extending the unified theory of acceptance and use of technology’, MIS Q., 2012, 36, (1), pp. 157178.
    40. 40)
      • 43. Likert, R.: ‘A technique for the measurement of attitudes’, Arch. Psychol., 1932, 22, (140), pp. 155.
    41. 41)
      • 29. Kim, J., Yang, S., Gerla, M.: ‘Stroketrack: wireless inertial motion tracking of human arms for stroke telerehabilitation’. Proc. First ACM Workshop on Mobile Systems, Applications, and Services for Healthcare, mHealthSys ‘11, ACM.2011.
    42. 42)
      • 2. WHO: ‘Health in 2015: from MDGs to SDGs’. Tech. Rep., World Health Organization, 2015.
    43. 43)
      • 37. Klijs, B., Nusselder, W.J., Looman, C.W., et al: ‘Contribution of chronic disease to the burden of disability’, PLoS ONE, 2011, 6, (9), p. e25325.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cvi.2017.0114
Loading

Related content

content/journals/10.1049/iet-cvi.2017.0114
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading