access icon free Animal classification using facial images with score-level fusion

A real-world animal biometric system that detects and describes animal life in image and video data is an emerging subject in machine vision. These systems develop computer vision approaches for the classification of animals. A novel method for animal face classification based on score-level fusion of recently popular convolutional neural network (CNN) features and appearance-based descriptor features is presented. This method utilises a score-level fusion of two different approaches; one uses CNN which can automatically extract features, learn and classify them; and the other one uses kernel Fisher analysis (KFA) for its feature extraction phase. The proposed method may also be used in other areas of image classification and object recognition. The experimental results show that automatic feature extraction in CNN is better than other simple feature extraction techniques (both local- and appearance-based features), and additionally, appropriate score-level combination of CNN and simple features can achieve even higher accuracy than applying CNN alone. The authors showed that the score-level fusion of CNN extracted features and appearance-based KFA method have a positive effect on classification accuracy. The proposed method achieves 95.31% classification rate on animal faces which is significantly better than the other state-of-the-art methods.

Inspec keywords: image representation; biometrics (access control); face recognition; computer vision; object recognition; neural nets; image classification; feature extraction; pattern classification; learning (artificial intelligence)

Other keywords: simple feature extraction techniques; simple features; animal faces; appearance-based descriptor features; score-level fusion; computer vision approaches; animal life; feature extraction phase; image classification; classification accuracy; uses CNN; appropriate score-level combination; facial images; recently popular convolutional neural network features; real-world animal biometric system; automatic feature extraction; animal face classification; 95.31% classification rate; animal classification; video data

Subjects: Neural computing techniques; Knowledge engineering techniques; Image recognition; Other topics in statistics; Optical, image and video signal processing; Computer vision and image processing techniques

References

    1. 1)
      • 5. Patil, A., Bhalke, D.: ‘Fusion of fingerprint, palmprint and iris for person identification’. Int. Conf. Automatic Control and Dynamic Optimization Techniques (ICACDOT), Pune, 2016, pp. 960963.
    2. 2)
      • 34. Ahonen, T., Matas, J., He, C., et al: ‘Rotation invariant image description with local binary pattern histogram Fourier features’, Lect. Notes Comput. Sci., 2009, 5575, pp. 6170.
    3. 3)
      • 8. Ramanan, D., Forsyth, D.A., Barnard, K.: ‘Detecting, localizing and recovering kinematics of textured animals’. 2005 IEEE Computer Society Conf. Computer Vision and Pattern Recognition, San Diego, USA, June 2005, pp. 635642.
    4. 4)
      • 13. Si, Z., Zhu, S.-C.: ‘Learning hybrid image templates (HIT) by information projection’, IEEE Trans. Pattern Anal. Mach. Intell., 2012, 34, (7), pp. 13541367.
    5. 5)
      • 26. Riesenhuber, M., Poggio, T.: ‘Hierarchical models of object recognition in cortex’, Nat. Neurosci., 1999, 2, pp. 10191025.
    6. 6)
      • 27. Cord, M., Theriault, C., Thome, N.: ‘HMAX-S: deep scale representation for biologically inspired image categorization’. Proc. IEEE Int. Conf. Image Processing, Brussels, Belgium, 2011, pp. 12611264.
    7. 7)
      • 11. Penga, Z., Lia, Y., Caib, Z., et al: ‘Deep boosting: joint feature selection and analysis dictionary learning in hierarchy’, Neurocomputing, 2016, 178, (20), pp. 3645.
    8. 8)
      • 4. Sim, H., Hishammuddin, A., Rohayanti, H., et al: ‘Multimodal biometrics: weighted score-level fusion based on non-ideal iris and face images’, Expert Syst. Appl., 2014, 41, (11), pp. 53905404.
    9. 9)
      • 6. Takimoto, H., Mitsukura, Y., Fukumi, M., et al: ‘Robust gender and age estimation under varying facial pose’, Electron. Commun. Jpn., 2008, 91, (7), pp. 3240.
    10. 10)
      • 33. Guo, Z., Zhang, D., Zhang, D.: ‘A completed modeling of local binary pattern operator for texture classification’, IEEE Trans. Image Process., 2010, 19, (6), pp. 16571663.
    11. 11)
      • 12. Afkham, H., Tavakoli, A., Eklundh, J., et al: ‘Joint visual vocabulary for animal classification’. Int. Conf. Pattern Recognition, 2008. ICPR 2008, Tampa, FL, USA, 2008, pp. 14.
    12. 12)
      • 24. Liu, L., Fieguth, P., Guo, Y., et al: ‘Local binary features for texture classification: taxonomy and experimental study’, Pattern Recognit., 2017, 62, pp. 135160.
    13. 13)
      • 23. Liu, L., Lao, S., Fieguth, P., et al: ‘Median robust extended local binary pattern for texture classification’, IEEE Trans. Image Process, 2016, 25, (3), pp. 13681381.
    14. 14)
      • 9. Ramanan, D., Forsyth, D.A., Barnard, M.-K.: ‘Building models of animals from video’, IEEE Trans. Pattern Anal. Mach. Intell., 2006, 28, (8), pp. 13191334.
    15. 15)
      • 35. Donahue, J., Jia, Y., Vinyals, O., et al: ‘DeCAF: a deep convolutional activation feature for generic visual recognition’. Int. Conf. Machine Learning (ICML), Beijing, China, 2014, pp. 647655.
    16. 16)
      • 32. Si, Z., Zhu, S.-C.: ‘Learning and-or templates for object recognition and detection’, IEEE Trans. Pattern Anal. Mach. Intell., 2013, 35, (9), pp. 21892205.
    17. 17)
      • 31. Eskandari, M., Toygar, Ö.: ‘Selection of optimized features and weights on face-iris fusion using distance images’, Comput. Vis. Image Underst., 2015, 137, pp. 6375.
    18. 18)
      • 28. Thériault, C., Thome, N., Cord, M.: ‘Extended coding and pooling in the HMAX model’, IEEE Trans. Image Process., 2013, 22, (2), pp. 764777.
    19. 19)
      • 17. Simonyan, K., Zisserman, A.: ‘Very deep convolutional networks for large-scale image recognition’, arXiv preprint arXiv:1409.1556.
    20. 20)
      • 14. Druzhkov, P.N., Kustikova, V.D.: ‘A survey of deep learning methods and software tools for image classification and object detection’, Pattern Recognit. Image Anal., 2016, 26, (1), pp. 915.
    21. 21)
      • 2. Marcialis, G., Roli, F.: ‘Score-level fusion of fingerprint and face matchers for personal verification under stress conditions’. 14th IEEE Int. Conf. Image Analysis and Processing ICIAP, DC, USA, 2007, pp. 259264.
    22. 22)
      • 37. He, M., Horng, S., Fan, F., et al: ‘Performance evaluation of score level fusion in multimodal’, Biometric Syst. Pattern Recognit., 2010, 43, pp. 17891800.
    23. 23)
      • 16. Russakovsky, O., Deng, J., Su, H., et al: ‘Imagenet large scale visual recognition challenge’, Int. J. Comput. Vision, 2015, 115, (3), pp. 211252.
    24. 24)
      • 7. Schmid, C.: ‘Constructing models for content-based image retrieval’. Proc. 2001 IEEE Computer Society Conf. Computer Vision and Pattern Recognition, 2001. CVPR 2001, Kauai, USA, December 2001, pp. 1139.
    25. 25)
      • 21. Eskandari, M., Toygar, Ö.: ‘Fusion of face and iris biometrics using local and global feature extraction methods’, Signal Image Video Process., 2014, 8, (6), pp. 9951006.
    26. 26)
      • 18. Deng, J., Dong, W., Socher, R.: ‘Imagenet: a large-scale hierarchical image database’. Proc. IEEE Conf. Computer Vision Pattern Recognition, Miami FL, USA, 2009, pp. 248255.
    27. 27)
      • 3. Elmir, Y., Elberrichi, Z., Adjoudj, R.: ‘Score-level fusion based multimodal biometric identification (fingerprint & voice)’. 6th Int. Conf. Sciences of Electronics, Technologies of Information and Telecommunications, Sousse, 2010, pp. 146150.
    28. 28)
      • 19. Dalal, N., Triggs, B.: ‘Histograms of oriented gradients for human detection’. Computer Vision and Pattern Recognition, San Diego, CA, USA, June 2005, pp. 886893.
    29. 29)
      • 10. Berg, T.L., Forsyth, D.A.: ‘Animals on the web’. 2006 IEEE Computer Society Conf. Computer Vision and Pattern Recognition (CVPR'06), NY, USA, 2006, pp. 14631470.
    30. 30)
      • 30. Belhumeur, P.N., Hespanha, J.P., Kriegman, D.J.: ‘Eigenfaces vs. fisherfaces: recognition using cla ss specific linear projection’, IEEE Trans. Pattern Anal. Mach. Intell., 1997, 19, pp. 711720.
    31. 31)
      • 25. Liu, C.: ‘Capitalize on dimensionality increasing techniques for improving face recognition grand challenge performance’, IEEE Trans. Pattern Anal. Mach. Intell., 2006, 28, (5), pp. 725737.
    32. 32)
      • 20. Farmanbar, M., Toygar, Ö.: ‘Feature selection for the fusion of face and palmprint biometrics’, Signal Image Video Process., 2016, 10, (5), pp. 951958.
    33. 33)
      • 1. Elson, J., Douceur, J., Howell, J., et al: ‘Asirra: a CAPTCHA that exploits interest-aligned manual image categorization’. Proc. ACM Conf. Computer and Communications Security (CCS), Alexandria VA, USA, 2007, pp. 366374.
    34. 34)
      • 29. Bingpeng, M., Su, Y., Jurie, F.: ‘Covariance descriptor based on bio-inspired features for person re-identification and face verification’, Image Vision Comput., 2014, 32, (6-7), pp. 379390.
    35. 35)
      • 22. Ojala, T., Pietikäinen, M., Maenpää, T.: ‘Multiresolution gray-scale and rotation invariant texture classification with local binary patterns’, IEEE Trans. Pattern Anal. Mach. Intell., 2002, 24, (7), pp. 971987.
    36. 36)
      • 15. Krizhevsky, A., Sutskever, I., Hinton, G.: ‘Imagenet classification with deep convolutional neural networks’. Advances in Neural Information Processing Systems, Lake Tahoe, USA, 2012, pp. 10971105.
    37. 37)
      • 36. Nanni, L., Ghidoni, S., Brahnamb, S.: ‘Handcrafted vs. non-handcrafted features for computer vision classification’, Pattern Recognit., 2017, 71, pp. 158172.
    38. 38)
      • 38. Felzenszwalb, P., Girshick, R., McAllester, D., et al: ‘Object detection with discriminatively trained part-based models’, IEEE Trans. Pattern Anal. Mach. Intell., 2010, 32, (9), pp. 16271645.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cvi.2017.0079
Loading

Related content

content/journals/10.1049/iet-cvi.2017.0079
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading