Animal classification using facial images with score-level fusion

Animal classification using facial images with score-level fusion

For access to this article, please select a purchase option:

Buy eFirst article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
— Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

A real-world animal biometric system that detects and describes animal life in image and video data is an emerging subject in machine vision. These systems develop computer vision approaches for the classification of animals. A novel method for animal face classification based on score-level fusion of recently popular convolutional neural network (CNN) features and appearance-based descriptor features is presented. This method utilises a score-level fusion of two different approaches; one uses CNN which can automatically extract features, learn and classify them; and the other one uses kernel Fisher analysis (KFA) for its feature extraction phase. The proposed method may also be used in other areas of image classification and object recognition. The experimental results show that automatic feature extraction in CNN is better than other simple feature extraction techniques (both local- and appearance-based features), and additionally, appropriate score-level combination of CNN and simple features can achieve even higher accuracy than applying CNN alone. The authors showed that the score-level fusion of CNN extracted features and appearance-based KFA method have a positive effect on classification accuracy. The proposed method achieves 95.31% classification rate on animal faces which is significantly better than the other state-of-the-art methods.

Related content

This is a required field
Please enter a valid email address