Bird and whale species identification using sound images

Bird and whale species identification using sound images

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Computer Vision — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Image identification of animals is mostly centred on identifying them based on their appearance, but there are other ways images can be used to identify animals, including by representing the sounds they make with images. In this study, the authors present a novel and effective approach for automated identification of birds and whales using some of the best texture descriptors in the computer vision literature. The visual features of sounds are built starting from the audio file and are taken from images constructed from different spectrograms and from harmonic and percussion images. These images are divided into sub-windows from which sets of texture descriptors are extracted. The experiments reported in this study using a dataset of Bird vocalisations targeted for species recognition and a dataset of right whale calls targeted for whale detection (as well as three well-known benchmarks for music genre classification) demonstrate that the fusion of different texture features enhances performance. The experiments also demonstrate that the fusion of different texture features with audio features is not only comparable with existing audio signal approaches but also statistically improves some of the stand-alone audio features. The code for the experiments will be publicly available at


    1. 1)
      • 1. Russell, J.C., Hasler, N., Klette, R., et al: ‘Automatic track recognition of footprints for identifying cryptic species’, Ecology, 2009, 90, (7), pp. 20072013.
    2. 2)
      • 2. Costa, Y.M.G., Oliveira, L.E.S., Koerich, A.L., et al: ‘Music genre recognition using spectrograms’. 18th Int. Conf. on Systems, Signals and Image Processing, 2011, pp. 151154.
    3. 3)
      • 3. Haralick, R.M., Shanmugam, K., Dinstein, I.: ‘Textural features for image classification’, IEEE Trans. Syst. Man Cybern., 1973, 3, (6), pp. 610621.
    4. 4)
      • 4. Costa, Y.M.G., Oliveira, L.E.S., Koerich, A.L., et al: ‘Music genre classification using LBP textural features’, Signal Process., 2012, 92, pp. 27232737.
    5. 5)
      • 5. Costa, Y.M.G., Oliveira, L.E.S., Koerich, A.L., et al: ‘Music genre recognition using Gabor filters and LPQ texture descriptors’. 18th Iberoamerican Congress on Pattern Recognition, 2013, pp. 6774.
    6. 6)
      • 6. Nanni, L., Costa, Y.M.G., Lumini, A., et al: ‘Combining visual and acoustic features for music genre classification’, Expert Syst. Appl., 2016, 45, pp. 108117.
    7. 7)
      • 7. Montalvo, A., Costa, Y.M.G., Calvo, J.R.: ‘Language identification using spectrogram texture’, in Cancela, H., Cuadros-Vargas, A., Cuadros-Vargas, E. (Eds.): ‘Progress in pattern recognition, image analysis, computer vision, and applications’ (Springer, Berlin, 2015), pp. 543550.
    8. 8)
      • 8. Lucio, D.R., Costa, Y.M.G.: ‘Bird species classification using spectrograms’. The XLI Latin American Computing Conf. (CLEI), Arequipa, Peru, 2015.
    9. 9)
      • 9. Nanni, L., Costa, Y.M.G., Lucio, D.R., et al: ‘Combining visual and acoustic features for bird species classification’. 28th IEEE Int. Conf. on Tools with Artificial Intelligence, 2016.
    10. 10)
      • 10. Nanni, L., Costa, Y.M.G., Lucio, D.R., et al: ‘Combining visual and acoustic features for audio classification tasks’, Pattern Recognit. Lett., 2017, 88, (March), pp. 4956.
    11. 11)
      • 11. Deuser, L.M., Middleton, D., Plemonset, T.D., et al: ‘On the classification of underwater acoustic signals. II. Experimental applications involving fish’, J. Acoust. Soc. Am., 1979, 65, (2), pp. 444455.
    12. 12)
      • 12. Giryn, A., Rojewski, M., Somla, K.: ‘About the possibility of sea creature species identification on the basis of applying pattern recognition to echo-sounder signals’. Meeting on Hydroacoustical Methods for the Estimation of Marine Fish Population, 1979, pp. 455466.
    13. 13)
      • 13. Chesmore, E.D.: ‘Application of time domain signal coding and artificial neural networks to passive acoustical identification of animals’, Appl. Acoust., 2001, 62, pp. 13591374.
    14. 14)
      • 14. Lee, C., Chou, C., Han, C., et al: ‘Automatic recognition of animal vocalizations using averaged MFCC and linear discriminant analysis’, Pattern Recognit. Lett., 2006, 27, pp. 93101.
    15. 15)
      • 15. Molnár, C., Kaplan, F., Roy, P., et al: ‘Classification of dog barks: a machine learning approach’, Animal Cogn., 2008, 11, pp. 389400.
    16. 16)
      • 16. Pachet, F., Zils, A.: ‘Automatic extraction of music descriptors from acoustic signals’. 5th Int. Conf. on Music Information Retrieval (ISMIR), 2004.
    17. 17)
      • 17. Bardeli, R., Wolff, D., Kurth, F., et al: ‘Detecting bird sounds in a complex acoustic environment and application to bioacoustic monitoring’, Pattern Recognit. Lett., 2010, 31, pp. 15241534.
    18. 18)
      • 18. Cheng, J., Sun, Y., Ji, L.: ‘A call-independent and automatic acoustic system for the individual recognition of animals: a novel model using four passerines’, Pattern Recognit., 2010, 43, pp. 38463852.
    19. 19)
      • 19. Lucio, D.R., Costa, Y.M.G.: ‘Bird species classification using visual and acoustic features extracted from audio signal’. Int. Conf. of the Chilean Computer Science Society, Valparaiso, Chile, 2016.
    20. 20)
      • 20. Urazghildiiev, I.R., Clark, C.W., Krein, T.P., et al: ‘Detection and recognition of north atlantic right whale contact calls in the presence of ambient noise’, IEEE J. Ocean. Eng., 2009, 34, (3), pp. 358368.
    21. 21)
      • 21. Spaulding, E., Robbins, M., Calupca, T., et al: ‘An autonomous, near-real-time buoy system for automatic detection of North Atlantic right whale calls’. 157th Meeting of the Acoustical Society of America, 2009.
    22. 22)
      • 22. Fitzgerald, D.: ‘Harmonic/Percussive separation using median filtering’. 13th Int. Conf. on Digital Audio Effects (DAFx-10), Graz, Austria, 2010.
    23. 23)
      • 23. McAfee, B., Raffel, C., Liang, D.: ‘Librosa: audio and music signal analysis in python’. Proc. 14th Python in Science Conf. (SCIPY), Austin, Texas, 2015.
    24. 24)
      • 24. Costa, Y.M.G., Oliveira, L.E.S., Koerich, A.L., et al: ‘Comparing textural features for music genre classification’. IEEE World Congress on Computational Intelligence, 2012, pp. 18671872.
    25. 25)
      • 25. Umesh, S., Cohen, L., Nelson, D.: ‘Fitting the mel scale’. Int. Conf. on Acoustics, Speech, and Signal Processing, 1999, pp. 217220.
    26. 26)
      • 26. Ojala, T., Pietikainen, M., Maeenpaa, T.: ‘Multiresolution gray-scale and rotation invariant texture classification with local binary patterns’, IEEE Trans. Pattern Anal. Mach. Intell., 2002, 24, (7), pp. 971987.
    27. 27)
      • 27. Ojansivu, V., Heikkila, J.: ‘Blur insensitive texture classification using local phase quantization’. Int. Conf. on Image and Signal Processing, 2008, pp. 236243.
    28. 28)
      • 28. Zhao, G., Ahonen, T., Matas, J., et al: ‘Rotation-invariant image and video description with local binary pattern features’, IEEE Trans. Image Process., 2012, 21, (4), pp. 14651467.
    29. 29)
      • 29. Nosaka, R., Suryanto, C.H., Fukui, K.: ‘Rotation invariant co-occurrence among adjacent LBPs’. ACCV Workshops, 2012, pp. 1525.
    30. 30)
      • 30. Nanni, L., Brahnam, S., Lumini, A., et al: ‘Ensemble of local phase quantization variants with ternary encoding’, in ‘Local binary patterns: new variants and applications’ (Springer, Berlin, 2014).
    31. 31)
      • 31. San Biagio, M., Crocco, M., Cristani, M., et al: ‘Heterogeneous auto-similarities of characteristics (HASC): exploiting relational information for classification’. IEEE Computer Vision (ICCV'13), 2013, pp. 809816.
    32. 32)
      • 32. Kannala, J., Rahtu, E.: ‘Bsif: binarized statistical image features’. 21st Int. Conf. on Pattern Recognition (ICPR 2012), Tsukuba, Japan, 2012, pp. 13631366.
    33. 33)
      • 33. Nanni, L., Paci, M., Santos, F.L.C., et al: ‘Texture descriptors ensembles enable image-based classification of maturation of human stem cell-derived retinal pigmented epithelium’, PLoS One, 2016, 11, (2) p. e0149399.
    34. 34)
      • 34. Zhu, Z., You, X., Chen, C.L.P., et al: ‘An adaptive hybrid pattern for noise-robust texture analysis’, Pattern Recognit., 2015, 48, pp. 25922608.
    35. 35)
      • 35. Song, T., Meng, F.: ‘Letrist: locally encoded transform feature histogram for rotation-invariant texture classification’, IEEE Trans. Circuits Syst. Video Technol., 2017, PP, (99).
    36. 36)
      • 36. Nanni, L., Brahnam, S., Lumini, A.: ‘Combining different local binary pattern variants to boost performance’, Expert Syst. Appl., 2011, 38, (5), pp. 62096216.
    37. 37)
      • 37. Wang, Q., Li, P., Zhang, L., et al: ‘Towards effective codebookless model for image classification’, Pattern Recognit., 2016, 59, pp. 6371.
    38. 38)
      • 38. Schroeder, M.R., Atal, B.S., Hall, J.L.: ‘Optimizing digital speech coders by exploiting masking properties of the human ear’, J. Acoust. Soc. Am., 1979, 66, (6), pp. 16471652.
    39. 39)
      • 39. Fagerlund, S.: ‘Bird species recognition using support vector machines’, EURASIP J. Appl. Signal Process., 2007, 2007, pp. 18.
    40. 40)
      • 40. Lim, S.-C., Lee, J.-S., Jang, S.-J., et al: ‘Music-genre classification system based on spectro-temporal features and feature selection’, IEEE Trans. Consum. Electron., 2012, 58, (4), pp. 12621268.
    41. 41)
      • 41. Vilches, E., Escobar, I.A., Vallejo, E.E., et al: ‘Data mining applied to acoustic bird species recognition’. Int. Conf. on Pattern Recognition, Hong Kong, 2006, pp. 400403.
    42. 42)
      • 42. Chou, C.-H., Liu, P.-H.: ‘Bird species recognition by wavelet transformation of a section of birdsong’. Symp. and Workshops on Ubiquitous, Autonomic and Trusted Computing, 2009, pp. 189193.
    43. 43)
      • 43. Lopes, M.T., Gioppo, L.L., Higushi, T.T., et al: ‘Automatic bird species identification for large number of species’. IEEE Int. Symp. On Multimedia (ISM), 2011.
    44. 44)
      • 44. Zhao, Z., Zhang, S.-H., Xu, Z.-Y., et al: ‘Automated bird acoustic event detection and robust species classification’, Ecological Inf., 2017, 39, pp. 99108.
    45. 45)
      • 45. Silla, C.N.Jr., Koerich, A.L., Kaestner, C.A.A.: ‘The latin music database’. 9th Int. Conf. on Music Information Retrieval, Philadelphia, USA, 2008, pp. 451456.
    46. 46)
      • 46. Flexer, A.: ‘A closer look on artist filters for musical genre classification’, World, 2007, 19, (122), pp. 1617.
    47. 47)
      • 47. Ong, B., Serra, X., Streich, S., et al: ‘ISMIR 2004 audio description contest’ (Music Technology Group-Universitat Pompeu Fabra, Barcelona, Spain, 2006).
    48. 48)
      • 48. Tzanetakis, G., Cook, P.: ‘Musical genre classification of audio signals’, IEEE Trans. Speech Audio Process., 2002, 10, (5), pp. 293302.
    49. 49)
      • 49. Costa, C.H.L., Valle, J.D.Jr., Koerich, A.L.: ‘Automatic classification of audio data’. Int. Conf. on Systems, Man, and Cybernetics, 2004, pp. 562567.
    50. 50)
      • 50. Wu, M.-J., Chen, Z.-S., Jang, J.-S.R., et al: ‘Combining visual and acoustic features for music genre classification’. Int. Conf. on Machine Learning and Applications, 2011.
    51. 51)
      • 51. Hamel, P.: ‘Pooled features classification’. Submission to Audio Train/Test Task of MIREX, 2011.
    52. 52)
      • 52. Ren, J.-M., Jang, J.-S.R.: ‘Discovering time-constrained sequential patterns for music genre classification’, IEEE Trans. Audio Speech Lang. Process., 2012, 20, (4), pp. 11341144.
    53. 53)
      • 53. Pikrakis, A.: ‘Audio latin music genre classification: a MIREX submission based on a deep learning approach to rhythm modelling’, 2013.
    54. 54)
      • 54. Seyerlehner, K., Schedl, M., Pohle, T., et al: ‘Using block-level features for genre classification, tag classification and music similarity estimation’. 6th Annual Music Information Retrieval Evaluation eXchange (MIREX-2010), Utrecht, The Netherlands, 2010.
    55. 55)
      • 55. Panagakis, Y., Kotropoulos, C., Arce, G.R.: ‘Music genre classification using locality preserving non-negative tensor factorization and sparse representations’. 10th Int. Conf. on Music Information Retrieval, 2009, pp. 249254.
    56. 56)
      • 56. Gwardys, G., Grzywczak, D.: ‘Deep image features in music information retrieval’, Int. J. Electron. Telecommun., 2014, 60, (4), pp. 321326.
    57. 57)
      • 57. Costa, Y.M.G., Oliveira, L.E.S., Silla, C.N.Jr.: ‘An evaluation of convolutional neural networks for music classification using spectrograms’, Appl. Soft Comput., 2017, 52, pp. 2838.
    58. 58)
      • 58. Demšar, J.: ‘Statistical comparisons of classifiers over multiple data sets’, J. Mach. Learn. Res., 2006, 7, pp. 130.
    59. 59)
      • 59. Kuncheva, L.I., Whitaker, C.J.: ‘Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy’, Mach. Learn., 2003, 51, (2), pp. 181207.

Related content

This is a required field
Please enter a valid email address