access icon free Non-concept density estimation via kernel regression for concept ranking in weakly labelled data

Automatic object annotation for weakly labelled images/videos has attracted great research interests. In the literature, the idea of negative mining has been proposed for the task. Following existing works, the authors start with image/video over-segmentation. With the assumption that the noisy segments in the concept images and the strongly labelled non-concept segments are drawn from the same distribution, the authors plan to estimate the non-concept distribution and apply it to the ambiguous segments to generate a concept ranking. Although this idea was proposed in existing work and was shown ineffective when combined with a naive kernel density estimation strategy, in this study, the authors explore improved density estimation techniques for the ranking and propose a kernel regression model whose parameters are estimated by a maximum likelihood estimation. Experimental results validate the effectiveness of their method.

Inspec keywords: maximum likelihood estimation; regression analysis; image segmentation; data mining

Other keywords: kernel density estimation strategy; maximum likelihood estimation; automatic object annotation; weakly labelled videos; video over-segmentation; kernel regression model; nonconcept density estimation; image over-segmentation; concept ranking; weakly labelled images; negative mining

Subjects: Other topics in statistics; Data handling techniques; Computer vision and image processing techniques; Other topics in statistics; Optical, image and video signal processing

References

    1. 1)
      • 17. Brox, T., Malik, J.: ‘Object segmentation by long term analysis of point trajectories’. European Conf. on Computer Vision, Heraklion, Crete, Greece, 2010, pp. 282295.
    2. 2)
      • 15. Arbelaez, P., Maire, M., Fowlkes, C., et al: ‘Contour detection and hierarchical image segmentation’, IEEE Trans. Pattern Anal. Mach. Intell., 2011, 33, (5), pp. 898916.
    3. 3)
      • 5. Zhu, J., Mao, J., Yuille, A.L.: ‘Learning from weakly supervised data by the expectation loss SVM (e-svm) algorithm’. Advances in Neural Information Processing Systems 27: Annual Conf. on Neural Information Processing Systems 2014, Montreal, QC, Canada, 2014, pp. 11251133.
    4. 4)
      • 14. Felzenszwalb, P.F., Huttenlocher, D.P.: ‘Efficient graph-based image segmentation’, Int. J. Comput. Vis., 2004, 59, (2), pp. 167181.
    5. 5)
      • 1. Nguyen, M.H., Torresani, L., De la Torre, L., et al: ‘Weakly supervised discriminative localization and classification: a joint learning process’. IEEE Int. Conf. on Computer Vision, Kyoto, Japan, 2009, pp. 19251932.
    6. 6)
      • 10. United States , 2013, pp. 24832490.
    7. 7)
      • 19. Xu, C., Xiong, C., Corso, J.J.: ‘Streaming hierarchical video segmentation’. European Conf. on Computer Vision, Florence, Italy, 2012, pp. 626639.
    8. 8)
      • 22. Vedaldi, A., Fulkerson, B.: ‘VLFeat: An open and portable library of computer vision algorithms’, 2008. Accessed date: 2015, available at http://www.vlfeat.org/.
    9. 9)
      • 8. Wang, S., Wang, Y.: ‘Weakly supervised semantic segmentation with a multiscale model’, IEEE Signal Process. Lett., 2015, 22, (3), pp. 308312.
    10. 10)
      • 23. Lowe, D.G.: ‘Distinctive image features from scale-invariant keypoints’, Int. J. Comput. Vis., 2004, 60, (2), pp. 91110.
    11. 11)
      • 11. Fu, Z., Robles-Kelly, A., Zhou, J.: ‘MILIS: multiple instance learning with instance selection’, IEEE Trans. Pattern Anal. Mach. Intell., 2011, 33, (5), pp. 958977.
    12. 12)
      • 9. Zhao, J., Wang, L., Cabral, R., et al: ‘Feature and region selection for visual learning’, IEEE Trans. Image Process., 2016, 25, pp. 10841094.
    13. 13)
      • 18. Grundmann, M., Kwatra, V., Han, M., et al: ‘Efficient hierarchical graph-based video segmentation’. IEEE Conf. on Computer Vision and Pattern Recognition, San Francisco, CA, United States, 2010, pp. 21412148.
    14. 14)
      • 3. Siva, P., Russell, C., Xiang, T.: ‘In defence of negative mining for annotating weakly labelled data’. European Conf. on Computer Vision, Florence, Italy, 2012, pp. 594608.
    15. 15)
      • 13. Chen, Y., Bi, J., Wang, J.Z.: ‘Miles: multiple-instance learning via embedded instance selection’, IEEE Trans. Pattern Anal. Mach. Intell., 2006, 28, (12), pp. 19311947.
    16. 16)
      • 21. Ji, P., Zhao, N., Hao, S., et al: ‘Automatic image annotation by semi-supervised manifold kernel density estimation’, Inf. Sci., 2014, 281, pp. 648660.
    17. 17)
      • 20. Behmo, R., Marcombes, P., Dalalyan, A.S., et al: ‘Towards optimal naïve Bayes nearest neighbor’. European Conf. on Computer Vision, Heraklion, Crete, Greece, 2010, pp. 171184.
    18. 18)
      • 6. Bilen, H., Pedersoli, M., Tuytelaars, T.: ‘Weakly supervised object detection with convex clustering’. IEEE Conf. on Computer Vision and Pattern Recognition, Boston, MA, United States, pp. 10811089.
    19. 19)
      • 4. Cinbis, R.G., Verbeek, J.J., Schmid, C.: ‘Multi-fold MIL training for weakly supervised object localization’. 2014 IEEE Conf. on Computer Vision and Pattern Recognition, Columbus, OH, United States, 2014, pp. 24092416.
    20. 20)
      • 2. Siva, P., Xiang, T.: ‘Weakly supervised action detection’. British Machine Vision Conf., Dundee, United kingdom, 2011, pp. 111.
    21. 21)
      • 16. Achanta, R., Shaji, A., Smith, K., et al: ‘SLIC superpixels compared to state-of-the-art superpixel methods’, IEEE Trans. Pattern Anal. Mach. Intell., 2012, 34, (11), pp. 22742282.
    22. 22)
      • 10. Tang, K.D., Sukthankar, R., Yagnik, J., et al: ‘Discriminative segment annotation in weakly labeled video’. IEEE Conf. on Computer Vision and Pattern Recognition, Portland, OR,.
    23. 23)
      • 7. Zhou, B., Jagadeesh, V., Piramuthu, R.: ‘Concept learner: discovering visual concepts from weakly labeled image collections’. IEEE Conf. on Computer Vision and Pattern Recognition, Boston, MA, United States, 2015, pp. 14921500.
    24. 24)
      • 12. Jiang, H.: ‘Weakly supervised learning for salient object detection using background images. CoRR abs/1501.07492, 2015.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cvi.2017.0036
Loading

Related content

content/journals/10.1049/iet-cvi.2017.0036
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading