http://iet.metastore.ingenta.com
1887

Automatic underwater moving object detection using multi-feature integration framework in complex backgrounds

Automatic underwater moving object detection using multi-feature integration framework in complex backgrounds

For access to this article, please select a purchase option:

Buy eFirst article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
— Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Moving object detection in a video sequence is one of the leading tasks of marine scientists to explore and monitor applications. The videos acquired in the underwater environment are usually degraded due to the physical properties of water medium as compared with images acquired in the air and that affects the performance of feature descriptors. In this study, a new feature descriptor, multi-frame triplet pattern (MFTP) is proposed for underwater moving object detection. The MFTP encodes the structure of local region based on three sets of frames, which are calculated by considering local differences in intensities between the centre pixel and its nine neighbours. Furthermore, the robustness of the proposed method is increased by integrating it with colour and motion features. The performance of the proposed framework is tested by conducting seven experiments on Fish4Knowledge database for underwater moving object detection applications. The results of the proposed method show a significant improvement as compared with state-of-the-art techniques in terms of their evaluation measures.

http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cvi.2017.0013
Loading

Related content

content/journals/10.1049/iet-cvi.2017.0013
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address