Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Discriminative feature learning-based pixel difference representation for facial expression recognition

Recently, researchers have proposed different feature descriptors to achieve robust performance for facial expression recognition (FER). However, finding a discriminative feature descriptor remains one of the critical tasks. In this paper, we propose a discriminative feature learning scheme to improve the representation power of expressions. First, we obtain a discriminative feature matrix (DFM) based pixel difference representation. Subsequently, all DFMs corresponding to the training samples are used to construct a discriminative feature dictionary (DFD). Next, DFD is projected on a vertical two-dimensional linear discriminant analysis in direction (V-2DLDA) space to compute between and within-class scatter because V-2DLDA works well with the DFD in matrix representation and achieves good efficiency. Finally, nearest neighbor (NN) classifier is used to determine the labels of the query samples. DFD represents the local feature changes that are robust to the expression, illumination et al. Besides, we exploit V-2DLDA to find an optimal projection matrix since it not only protects the discriminative features but reduces the dimensions. The proposed method achieves satisfying recognition results, reaching accuracy rates as high as 91.87% on CK+ database, 82.24% on KDEF database, and 78.94% on CMU Multi-PIE database in the LOSO scenario, which perform better than other comparison methods.

References

    1. 1)
      • 22. Yang, J., Zhang, D., Xu, Y., et al: ‘Two-Dimensional discriminant transform for face recognition’, Pattern Recogn., 2005, 38, (7), pp. 11251129.
    2. 2)
      • 26. Raedt, R.D.: ‘The Karolinska directed emotional faces: a validation study’, Cogn. Emot., 2008, 22, (6), pp. 10941118.
    3. 3)
      • 17. Datta, S., Sen, D., Balasubramanian, R.: ‘Integrating geometric and textural features for facial emotion classification using SVM frameworks’, Proc. Int. Conf. Computer Vision Image Process (CVIP), 2017, vol. 459, pp. 619628.
    4. 4)
      • 9. Ying, Z.L., Wang, Z.W., Huang, M.W.: ‘Facial expression recognition based on fusion of sparse representation’. Proc. Advanced Intelligent Computing Theories and Applications, Sixth Int. Conf. Intelligent Computing, Changsha, China, 2010, vol. 6216, pp. 457464.
    5. 5)
      • 12. Ruan, J.: ‘Facial expression recognition based on Gabor wavelet transform and relevance vector machine’, J. Inf. Comput. Sci., 2014, 11, (1), pp. 295302.
    6. 6)
      • 23. Jin, Y., Ruan, Q., Jin, Y., et al: ‘Face recognition using assembled matrix distance metric based 2DLDA algorithm’. International Conference on Signal Processing, ICSP, 2007, vol. 3, DOI: 10.1109/ICOSP.2006.345746.
    7. 7)
      • 2. Happy, S.L., Routray, A.: ‘Automatic facial expression recognition using features of salient facial patches’, IEEE Trans. Affect. Comput., 2015, 6, (1), pp. 112.
    8. 8)
      • 13. Zhang, S., Zhao, X., Lei, B.: ‘Robust facial expression recognition via compressive sensing’, Sensors, 2012, 12, (3), pp. 37473761.
    9. 9)
      • 24. Tian, Y.: ‘Evaluation of face resolution for expression analysis’. Computer Vision and Pattern Workshops, 2004, pp. 8282.
    10. 10)
      • 10. Wang, Z., Ying, Z.: ‘Facial expression recognition based on local phase quantization and sparse representation’. Proceedings-International Conference on Natural Computation, 2012, pp. 222225.
    11. 11)
      • 8. Huang, M.W., Wang, Z.W., Ying, Z.L.: ‘A new method for facial expression recognition based on sparse representation plus LBP’, Proceedings-2010 3rd International Congress on Image and Signal Processing, 2010, vol. 3, pp. 17501754.
    12. 12)
      • 6. Yurtkan, K., Demirel, H.: ‘Feature selection for improved 3D facial expression recognition’, Pattern Recogn. Lett., 2013, 38, (1), pp. 2633.
    13. 13)
      • 21. Li, M., Yuan, B.: ‘2D-LDA: a statistical linear discriminant analysis for image’, Pattern Recogn. Lett., 2005, 26, (5), pp. 527532.
    14. 14)
      • 25. Lucey, P., Cohn, J.F., Kanade, T., et al: ‘The extended Cohn–Kanade dataset (CK+): A complete dataset for action unit and emotion-specified expression’. IEEE Computer Society Conference on Computer Vision and Pattern Recognition-Workshops, 2010, 36, (1), pp. 94101.
    15. 15)
      • 1. Lee, S.H., Baddar, W.J., Yong, M.R.: ‘Collaborative expression representation using peak expression and intra class variation face images for practical subject-independent emotion recognition in videos’, Pattern Recogn., 2016, 54, (C), pp. 5267.
    16. 16)
      • 4. Yusuf, R., Sharma, D.G., Tanev, I., et al: ‘Evolving an emotion recognition module for an intelligent agent using genetic programming and a genetic algorithm’, Artif. Life Robot., 2016, 21, (1), pp. 8590.
    17. 17)
      • 5. Tariq, U., Yang, J., Huang, T.S.: ‘Supervised super-vector encoding for facial expression recognition’, Pattern Recogn. Lett., 2014, 46, (3), pp. 8995.
    18. 18)
      • 15. Lee, S.H., Yong, M.R.: ‘Intra-class variation reduction using training expression images for sparse representation based facial expression recognition’, IEEE Trans. Affect. Comput., 2014, 5, (3), pp. 340351.
    19. 19)
      • 18. Wang, S.J., Yan, W.J., Zhao, G., et al: ‘Micro-expression recognition using robust principle component analysis and local spatiotemporal directional features’, Lect. Notes Comput. Sci., 2014, 8925, pp. 325338.
    20. 20)
      • 3. Shao, J., Gori, L., Wan, S., et al: ‘3D dynamic facial expression recognition using low-resolution videos’, Pattern Recogn. Lett., 2015, 65, (C), pp. 157162.
    21. 21)
      • 14. Mohammadi, M.R., Fatemizadeh, E., Mahoor, M.H.: ‘PCA-based dictionary building for accurate facial expression recognition via sparse representation’, J. Vis. Commun. Image R., 2014, 25, (5), pp. 10821092.
    22. 22)
      • 16. Ghimire, D., Lee, J., Li, Z.N., et al: ‘Recognition of facial expressions based on salient geometric features and support vector machines’, Multimed. Tools Appl., 2017, 76, (6), pp. 78037821.
    23. 23)
      • 19. Siddiqi, M.H., Ali, R., Khan, A.M., et al: ‘Human facial expression recognition using stepwise linear discriminant analysis and hidden conditional random fields’, IEEE Trans. Image Process., 2015, 24, (4), pp. 13861398.
    24. 24)
      • 11. Shen, L.L., Bai, L., Fairhurst, M.: ‘Gabor wavelets and general discriminant analysis for face identification and verification’, Image Vis. Comput., 2007, 25, (5), pp. 553563.
    25. 25)
      • 20. Ye, J., Janardan, R., Li, Q.: ‘Two-dimensional linear discriminant analysis’, Photogramm. Eng. Rem. S., 2005, 5, (6), pp. 14311441.
    26. 26)
      • 27. Gross, R., Matthews, I., Cohn, J., et al: ‘Multi-PIE’, Image Vision Comput., 2010, 28, (5), pp. 807813.
    27. 27)
      • 7. Ouyang, Y., Sang, N., Huang, R.: ‘Robust automatic facial expression detection method based on sparse representation plus LBP map’, Optik: Int. J. Light Electron Opt., 2013, 8, (7), pp. 68276833.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cvi.2016.0505
Loading

Related content

content/journals/10.1049/iet-cvi.2016.0505
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address