http://iet.metastore.ingenta.com
1887

Robust saliency detection via corner information and an energy function

Robust saliency detection via corner information and an energy function

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Computer Vision — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

In this study, the authors propose a distinctive bottom-up visual saliency detection algorithm based on a new background prior and a new reinforcement. Inspired by genetic algorithm, the final map is obtained with three steps. First of all, the authors construct a background-based saliency map by manifold ranking via superior image corners selected by convex-hull as background prior, which is different from most of the existing background prior-based methods treated all image boundaries as background. Then, a better result is obtained by ranking the relevance of the image elements with foreground seeds extracted from the preliminary saliency map. Furthermore, a novel optimisation framework is introduced with the intention of refining the map, which integrates an energy function with a guided filter. Experimental results on three public datasets indicate that the proposed method performs favourably against the state-of-the-art algorithms.

References

    1. 1)
      • C. Guo , L. Zhang .
        1. Guo, C., Zhang, L.: ‘A novel multiresolution spatiotemporal saliency detection model and its applications in image and video compression’, IEEE Trans. Image Process., 2010, 19, (1), pp. 185198.
        . IEEE Trans. Image Process. , 1 , 185 - 198
    2. 2)
      • A. Torralba , P. Sinha .
        2. Torralba, A., Sinha, P.: ‘Statistical context priming for object detection’. 2001 Proc. Eighth IEEE Int. Conf. on Computer Vision, ICCV.2001, vol. 1, pp. 763770.
        . 2001 Proc. Eighth IEEE Int. Conf. on Computer Vision, ICCV. , 763 - 770
    3. 3)
      • U. Rutishauser , D. Walther , C. Koch .
        3. Rutishauser, U., Walther, D., Koch, C., et al: ‘Is bottom-up attention useful for object recognition?’. Proc. of the 2004 IEEE Computer Society Conf. on Computer Vision and Pattern Recognition, 2004. CVPR 2004., 2004, vol. 2, p. II-37.
        . Proc. of the 2004 IEEE Computer Society Conf. on Computer Vision and Pattern Recognition, 2004. CVPR 2004. , II - 37
    4. 4)
      • J. Li , X. Li , B. Yang .
        4. Li, J., Li, X., Yang, B., et al: ‘Segmentation-based image copy-move forgery detection scheme’, IEEE Trans. Inf. Forensics Sec., 2015, 10, (3), pp. 507518.
        . IEEE Trans. Inf. Forensics Sec. , 3 , 507 - 518
    5. 5)
      • Z. Zhou , Y. Wang , Q.J. Wu .
        5. Zhou, Z., Wang, Y., Wu, Q.J., et al: ‘Effective and efficient global context verification for image copy detection’, IEEE Trans. Inf. Forensics Sec., 2017, 12, (1), pp. 4863.
        . IEEE Trans. Inf. Forensics Sec. , 1 , 48 - 63
    6. 6)
      • X. Wang , L. Zhang , L. Lin .
        6. Wang, X., Zhang, L., Lin, L., et al: ‘Deep joint task learning for generic object extraction’. Advances in Neural Information Processing Systems, 2014, pp. 523531.
        . Advances in Neural Information Processing Systems , 523 - 531
    7. 7)
      • H. Jiang , J. Wang , Z. Yuan .
        7. Jiang, H., Wang, J., Yuan, Z., et al: ‘Salient object detection: A discriminative regional feature integration approach’. Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition, 2013, pp. 20832090.
        . Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition , 2083 - 2090
    8. 8)
      • J. Yang , M.-H. Yang .
        8. Yang, J., Yang, M.-H.: ‘Top-down visual saliency via joint crf and dictionary learning’. Computer Vision and Pattern Recognition (CVPR), 2012, pp. 22962303.
        . Computer Vision and Pattern Recognition (CVPR) , 2296 - 2303
    9. 9)
      • T. Chen , L. Lin , L. Liu .
        9. Chen, T., Lin, L., Liu, L., et al: ‘Disc: deep image saliency computing via progressive representation learning’, IEEE Trans. Neural Netw. Learn. Syst., 2016, 27, (6), pp. 11351149.
        . IEEE Trans. Neural Netw. Learn. Syst. , 6 , 1135 - 1149
    10. 10)
      • R. Achanta , S. Hemami , F. Estrada .
        10. Achanta, R., Hemami, S., Estrada, F., et al: ‘Frequency-tuned salient region detection’. Computer Vision and Pattern Recognition, 2009, pp. 15971604.
        . Computer Vision and Pattern Recognition , 1597 - 1604
    11. 11)
      • K.-Y. Chang , T.-L. Liu , H.-T. Chen .
        11. Chang, K.-Y., Liu, T.-L., Chen, H.-T., et al: ‘Fusing generic objectness and visual saliency for salient object detection’. 2011 Int. Conf. on Computer Vision, 2011, pp. 914921.
        . 2011 Int. Conf. on Computer Vision , 914 - 921
    12. 12)
      • M.-M. Cheng , N.J. Mitra , X. Huang .
        12. Cheng, M.-M., Mitra, N.J., Huang, X., et al: ‘Salient object detection and segmentation’, Image, 2011, 2, (3), pp. 99.
        . Image , 3 , 9 - 9
    13. 13)
      • M.-M. Cheng , J. Warrell , W.-Y. Lin .
        13. Cheng, M.-M., Warrell, J., Lin, W.-Y., et al: ‘Efficient salient region detection with soft image abstraction’. Proc. of the IEEE Int. Conf. on Computer Vision, 2013, pp. 15291536.
        . Proc. of the IEEE Int. Conf. on Computer Vision , 1529 - 1536
    14. 14)
      • S. Goferman , L. Zelnik-Manor , A. Tal .
        14. Goferman, S., Zelnik-Manor, L., Tal, A.: ‘Context-aware saliency detection’, IEEE Trans. Pattern Anal. Mach. Intell., 2012, 34, (10), pp. 19151926.
        . IEEE Trans. Pattern Anal. Mach. Intell. , 10 , 1915 - 1926
    15. 15)
      • J. Harel , C. Koch , P. Perona .
        15. Harel, J., Koch, C., Perona, P.: ‘Graph-based visual saliency’. Advances in Neural Information Processing Systems, 2006, pp. 545552.
        . Advances in Neural Information Processing Systems , 545 - 552
    16. 16)
      • X. Hou , L. Zhang .
        16. Hou, X., Zhang, L.: ‘Saliency detection: A spectral residual approach’. 2007 IEEE Conf. on Computer Vision and Pattern Recognition, 2007, pp. 18.
        . 2007 IEEE Conf. on Computer Vision and Pattern Recognition , 1 - 8
    17. 17)
      • B. Gu , V.S. Sheng .
        17. Gu, B., Sheng, V.S.: ‘A robust regularization path algorithm for v-support vector classification’, IEEE Trans. Neural Netw. Learn. Syst., 2016, PP, (99), pp. 18.
        . IEEE Trans. Neural Netw. Learn. Syst. , 99 , 1 - 8
    18. 18)
      • B. Jiang , L. Zhang , H. Lu .
        18. Jiang, B., Zhang, L., Lu, H., et al: ‘Saliency detection via absorbing Markov chain’. Proc. of the IEEE Int. Conf. on Computer Vision, 2013, pp. 16651672.
        . Proc. of the IEEE Int. Conf. on Computer Vision , 1665 - 1672
    19. 19)
      • Z. Pan , Y. Zhang , S. Kwong .
        19. Pan, Z., Zhang, Y., Kwong, S.: ‘Efficient motion and disparity estimation optimization for low complexity multiview video coding’, IEEE Trans. Broadcast., 2015, 61, (2), pp. 166176.
        . IEEE Trans. Broadcast. , 2 , 166 - 176
    20. 20)
      • K. Wang , L. Lin , J. Lu .
        20. Wang, K., Lin, L., Lu, J., et al: ‘Pisa: pixelwise image saliency by aggregating complementary appearance contrast measures with edge-preserving coherence’, IEEE Trans. Image Process., 2015, 24, (10), pp. 30193033.
        . IEEE Trans. Image Process. , 10 , 3019 - 3033
    21. 21)
      • H. Zhang , M. Xu .
        21. Zhang, H., Xu, M.: ‘Saliency detection based on boundary feature and smoothness energy function’, Optik-Int. J. Light Electron Opt., 2015, 126, (1), pp. 8186.
        . Optik-Int. J. Light Electron Opt. , 1 , 81 - 86
    22. 22)
      • C. Yang , L. Zhang , H. Lu .
        22. Yang, C., Zhang, L., Lu, H., et al: ‘Saliency detection via graph-based manifold ranking’. Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition, 2013, pp. 31663173.
        . Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition , 3166 - 3173
    23. 23)
      • Y. Qin , H. Lu , Y. Xu .
        23. Qin, Y., Lu, H., Xu, Y., et al: ‘Saliency detection via cellular automata’. Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition, 2015, pp. 110119.
        . Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition , 110 - 119
    24. 24)
      • F. Perazzi , P. Krahenbuhl , Y. Pritch .
        24. Perazzi, F., Krahenbuhl, P., Pritch, Y., et al: ‘Saliency filters: contrast based filtering for salient region detection’. 2012 IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), 2012, pp. 733740.
        . 2012 IEEE Conf. on Computer Vision and Pattern Recognition (CVPR) , 733 - 740
    25. 25)
      • W. Zhu , S. Liang , Y. Wei .
        25. Zhu, W., Liang, S., Wei, Y., et al: ‘Saliency optimization from robust background detection’. Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition, 2014, pp. 28142821.
        . Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition , 2814 - 2821
    26. 26)
      • C. Gong , D. Tao , W. Liu .
        26. Gong, C., Tao, D., Liu, W., et al: ‘Saliency propagation from simple to difficult’. Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition, 2015, pp. 25312539.
        . Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition , 2531 - 2539
    27. 27)
      • C. Li , Y. Yuan , W. Cai .
        27. Li, C., Yuan, Y., Cai, W., et al: ‘Robust saliency detection via regularized random walks ranking’. Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition, 2015, pp. 27102717.
        . Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition , 2710 - 2717
    28. 28)
      • T. Liu , Z. Yuan , J. Sun .
        28. Liu, T., Yuan, Z., Sun, J., et al: ‘Learning to detect a salient object’, IEEE Trans. Pattern Anal. Mach. Intell., 2011, 33, (2), pp. 353367.
        . IEEE Trans. Pattern Anal. Mach. Intell. , 2 , 353 - 367
    29. 29)
      • S. Alpert , M. Galun , A. Brandt .
        29. Alpert, S., Galun, M., Brandt, A., et al: ‘Image segmentation by probabilistic bottom-up aggregation and cue integration’, IEEE Trans. Pattern Anal. Mach. Intell., 2012, 34, (2), pp. 315327.
        . IEEE Trans. Pattern Anal. Mach. Intell. , 2 , 315 - 327
    30. 30)
      • J. Zhou , Y. Ren , Y. Yan .
        30. Zhou, J., Ren, Y., Yan, Y., et al: ‘Salient object detection: manifold-based similarity adaptation approach’, J. Electron. Imaging, 2014, 23, (6), pp. 063004063004.
        . J. Electron. Imaging , 6 , 063004 - 063004
    31. 31)
      • R. Liu , G. Zhong , J. Cao .
        31. Liu, R., Zhong, G., Cao, J., et al: ‘Diffuse visual attention for saliency detection’, J. Electron. Imaging, 2015, 24, (1), pp. 013023013023.
        . J. Electron. Imaging , 1 , 013023 - 013023
    32. 32)
      • M. Donoser , H. Bischof .
        32. Donoser, M., Bischof, H.: ‘Diffusion processes for retrieval revisited’. Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition, 2013, pp. 13201327.
        . Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition , 1320 - 1327
    33. 33)
      • B. Scholkopf , J.C. Platt , J. Shawe-Taylor .
        33. Scholkopf, B., Platt, J.C., Shawe-Taylor, J., et al: ‘Estimating the support of a highdimensional distribution’, Neural Comput., 2001, 13, (7), pp. 14431471.
        . Neural Comput. , 7 , 1443 - 1471
    34. 34)
      • D. Zhou , J. Weston , A. Gretton .
        34. Zhou, D., Weston, J., Gretton, A., et al: ‘Ranking on data manifolds’, Adv. Neural Inf. Process. Syst., 2004, 16, pp. 169176.
        . Adv. Neural Inf. Process. Syst. , 169 - 176
    35. 35)
      • M. Xu , H. Zhang .
        35. Xu, M., Zhang, H.: ‘Saliency detection with color contrast based on boundary information and neighbors’, Vis. Comput., 2015, 31, (3), pp. 355364.
        . Vis. Comput. , 3 , 355 - 364
    36. 36)
      • Y. Xie , H. Lu .
        36. Xie, Y., Lu, H.: ‘Visual saliency detection based on Bayesian model’. 2011 18th IEEE Int. Conf. on Image Processing, 2011, pp. 645648.
        . 2011 18th IEEE Int. Conf. on Image Processing , 645 - 648
    37. 37)
      • C. Yang , L. Zhang , H. Lu .
        37. Yang, C., Zhang, L., Lu, H.: ‘Graph-regularized saliency detection with convex-hull-based center prior’, IEEE Signal Process. Lett., 2013, 20, (7), pp. 637640.
        . IEEE Signal Process. Lett. , 7 , 637 - 640
    38. 38)
      • K. He , J. Sun , X. Tang .
        38. He, K., Sun, J., Tang, X.: ‘Guided image filtering’. European Conf. on Computer Vision, 2010, pp. 114.
        . European Conf. on Computer Vision , 1 - 14
    39. 39)
      • A. Borji , M.-M. Cheng , H. Jiang .
        39. Borji, A., Cheng, M.-M., Jiang, H., et al: ‘Salient object detection: A benchmark’, IEEE Trans. Image Process., 2015, 24, (12), pp. 57065722.
        . IEEE Trans. Image Process. , 12 , 5706 - 5722
    40. 40)
      • Z. Liu , W. Zou , O. Le Meur .
        40. Liu, Z., Zou, W., Le Meur, O.: ‘Saliency tree: A novel saliency detection framework’, IEEE Trans. Image Process., 2014, 23, (5), pp. 19371952.
        . IEEE Trans. Image Process. , 5 , 1937 - 1952
    41. 41)
      • Y. Wei , F. Wen , W. Zhu .
        41. Wei, Y., Wen, F., Zhu, W., et al: ‘Geodesic saliency using background priors’. European Conf. on Computer Vision, 2012, pp. 2942.
        . European Conf. on Computer Vision , 29 - 42
    42. 42)
      • J. Zhang , S. Sclaroff , Z. Lin .
        42. Zhang, J., Sclaroff, S., Lin, Z., et al: ‘Minimum barrier salient object detection at 80 fps’. Proc. of the IEEE Int. Conf. on Computer Vision, 2015, pp. 14041412.
        . Proc. of the IEEE Int. Conf. on Computer Vision , 1404 - 1412
    43. 43)
      • R. Margolin , A. Tal , L. Zelnik-Manor .
        43. Margolin, R., Tal, A., Zelnik-Manor, L.: ‘What makes a patch distinct?’. Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition, 2013, pp. 11391146.
        . Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition , 1139 - 1146
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cvi.2016.0492
Loading

Related content

content/journals/10.1049/iet-cvi.2016.0492
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address