access icon free On the improvement of foreground–background model-based object tracker

In this study, the authors propose two kinds of improvements to a baseline tracker that employs the tracking-by-detection framework. First, they explore different feature spaces by employing features commonly used in object detection to improve the performance of detector in feature space. Second, they propose a robust scale estimation algorithm that estimates the size of the object in the current frame. Their experimental results on the challenging online tracking benchmark-13 dataset show that reduced dimensionality histogram of oriented gradients boosts the performance of the tracker. The proposed scale estimation algorithm provides a significant gain and reduces the failure of the tracker in challenging scenarios. The improved tracker is compared with 13 state-of-the-art trackers. The quantitative and qualitative results show that the performance of the tracker is comparable with the state of the art against initialisation errors, variations in illumination, scale and motion, out-of-plane and in-plane rotations, deformations and low resolution.

Inspec keywords: object tracking; object detection

Other keywords: feature spaces; reduced dimensionality histogram of oriented gradients; object detection; online tracking benchmark-13 dataset; tracking-by-detection framework; foreground–background model-based object tracker; robust scale estimation algorithm

Subjects: Computer vision and image processing techniques; Optical, image and video signal processing

References

    1. 1)
      • 25. Jia, X., Lu, H., Yang, M.-H.: ‘Visual tracking via adaptive structural local sparse appearance model’. Proc. Computer Vision and Pattern Recognition (CVPR), 2012, pp. 18221829.
    2. 2)
      • 10. Dalal, N., Triggs, B.: ‘Histograms of oriented gradients for human detection’. Proc. IEEE Computer Society Conf. on Computer Vision and Pattern Recognition, vol. 1, 2005, pp. 886893.
    3. 3)
      • 27. Henriques, J.F., Caseiro, R., Martins, P., et al: ‘High-speed tracking with kernelized correlation filters’, IEEE Trans. Pattern Anal. Mach. Intell., 2015, 37, (3), pp. 583596.
    4. 4)
      • 22. Zhong, W., Lu, H., Yang, M.-H.: ‘Robust object tracking via sparsity-based collaborative model’. Proc. Computer Vision and Pattern Recognition (CVPR), 2012, pp. 18381845.
    5. 5)
      • 18. Grigorescu, S.E., Petkov, N., Kruizinga, P.: ‘Comparison of texture features based on Gabor filters’, IEEE Trans. Image Process., 2002, 11, (10), pp. 11601167.
    6. 6)
      • 26. Zhang, K., Zhang, L., Liu, Q., et al: ‘Fast visual tracking via dense spatio-temporal context learning’. Proc. European Conf. on Computer Vision, 2014, pp. 127141.
    7. 7)
      • 21. Hare, S., Saffari, A., Torr, P.H.: ‘Struck: structured output tracking with kernels’. Proc. 2011 Int. Conf. on Computer Vision, 2011, pp. 263270.
    8. 8)
      • 20. Dollr, P.: ‘Piotrs image and video Matlab toolbox (PMT)’. Available at http://vision.ucsd.edu/pdollar/toolbox/doc/index.html.
    9. 9)
      • 13. Zhang, J., Ma, S., Sclaroff, S.: ‘MEEM: robust tracking via multiple experts using entropy minimization’. Proc. European Conf. on Computer Vision, 2014, pp. 188203.
    10. 10)
      • 19. Freeman, W.T., Adelson, E.H.: ‘The design and use of steerable filters’, IEEE Trans. Pattern Anal. Mach. Intell., 1991, 13, (9), pp. 891906.
    11. 11)
      • 16. Viola, P., Jones, M.J.: ‘Robust real-time face detection’, Int. J. Comput. Vis., 2004, 57, (2), pp. 137154.
    12. 12)
      • 5. Bolme, D.S., Beveridge, J.R., Draper, B.A., et al: ‘Visual object tracking using adaptive correlation filters’. Proc. IEEE Computer Society Conf. on Computer Vision and Pattern Recognition, 2010, pp. 25442550.
    13. 13)
      • 7. Kalal, Z., Mikolajczyk, K., Matas, J.: ‘Tracking-learning-detection’, IEEE Trans. Pattern Anal. Mach. Intell., 2012, 34, (7), pp. 14091422.
    14. 14)
      • 28. Gao, J., Ling, H., Hu, W., et al: ‘Transfer learning based visual tracking with Gaussian processes regression’. Proc. European Conf. on Computer Vision, 2014, pp. 188203.
    15. 15)
      • 6. Nguyen, H.T., Smeulders, A.W.M.: ‘Robust tracking using foreground–background texture discrimination’, Int. J. Comput. Vis., 2006, 69, (3), pp. 277293.
    16. 16)
      • 8. Ma, C., Yang, X., Zhang, C., et al: ‘Long-term correlation tracking’. Proc. IEEE Computer Society Conf. on Computer Vision and Pattern Recognition, 2015, pp. 53885396.
    17. 17)
      • 24. Zhang, K., Zhang, L., Yang, M.-H.: ‘Real-time compressive tracking’. Proc. European Conf. on Computer Vision, 2012, pp. 864877.
    18. 18)
      • 15. Hare, S., Golodetz, S., Saffari, A., et al: ‘Struck: structured output tracking with kernels’, IEEE Trans. Pattern Anal. Mach. Intell., 2016, 38, (10), pp. 20962109.
    19. 19)
      • 12. Wu, Y., Lim, J., Yang, M.-H.: ‘Online object tracking: a benchmark’. Proc. IEEE Computer Society on Computer Vision and Pattern Recognition (CVPR), 2013, pp. 24112418.
    20. 20)
      • 2. Yilmaz, A., Javed, O., Shah, M.: ‘Object tracking: a survey’, ACM Comput. Surv., 2006, 38, (4), DOI: 10.1145/1177352.1177355.
    21. 21)
      • 3. Babenko, B., Yang, M.-H., Belongie, S.: ‘Robust object tracking with online multiple instance learning’, IEEE Trans. Pattern Anal. Mach. Intell., 2011, 33, (8), pp. 16191632.
    22. 22)
      • 17. Zhang, S., Bauckhage, C., Cremers, A.B.: ‘Informed Haar-like features improve pedestrian detection’. Proc. IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), June 2014.
    23. 23)
      • 23. Henriques, J.F., Caseiro, R., Martins, P., et al: ‘Exploiting the circulant structure of tracking-by-detection with kernels’. Proc. European Conference on Computer Vision, 2012, pp. 702715.
    24. 24)
      • 11. Felzenszwalb, P.F., Girshick, R.B., McAllester, D., et al: ‘Object detection with discriminatively trained part-based models’, IEEE Trans. Pattern Anal. Mach. Intell., 2010, 32, (9), pp. 16271645.
    25. 25)
      • 9. Danelljan, M., Hger, G., Shahbaz Khan, F., et al: ‘Accurate scale estimation for robust visual tracking’. Proc. British Machine Vision Conf., 2014.
    26. 26)
      • 14. Yang, J., Zhang, K., Liu, Q.: ‘Robust object tracking by online Fisher discrimination boosting feature selection’, Comput. Vis. Image Underst., 2016, 153, pp. 100108.
    27. 27)
      • 4. Zhang, K., Zhang, L., Yang, M.-H.: ‘Real-time object tracking via online discriminative feature selection’, IEEE Trans. Image Process., 2013, 22, (12), pp. 46644677.
    28. 28)
      • 1. Kristan, M., Matas, J., Leonardis, A., et al: ‘The visual object tracking VOT2015 challenge results’. Proc. IEEE Int. Conf. on Computer Vision (ICCV) Workshops, December 2015, pp. 123.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cvi.2016.0487
Loading

Related content

content/journals/10.1049/iet-cvi.2016.0487
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading