http://iet.metastore.ingenta.com
1887

SVCV: segmentation volume combined with cost volume for stereo matching

SVCV: segmentation volume combined with cost volume for stereo matching

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Computer Vision — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Stereo matching between binocular stereo images is fundamental to many computer vision tasks, such as three-dimensional (3D) reconstruction and robot navigation. Various structures of real 3D scenes lead stereo matching to be an old yet still challenging problem. In this study, the authors proposed a novel adaptive support weights technique which exploits the hierarchical information provided by multilevel segmentation to preserve the robustness to imaging conditions and spatial proximity in cost aggregation. Besides, a generalisable cost refinement strategy is designed to remove the matching ambiguity in large weakly textured regions. The proposed strategy utilises both the fluctuation of the filtered cost volume and the colour information to further improve the matching accuracy. Experimental results of 50 stereo images demonstrate the effectiveness and efficiency of the proposed method. Furthermore, a systematic evaluation is developed to assess the conventional steps in local stereo methods and then reliable suggestions are given to the beginners and researchers outside the stereo matching field.

References

    1. 1)
      • D. Scharstein , R. Szeliski , R. Zabih .
        1. Scharstein, D., Szeliski, R., Zabih, R.: ‘A taxonomy and evaluation of dense two-frame stereo correspondence algorithms’, Int. J. Comput. Vis., 2002, 47, (1), pp. 742.
        . Int. J. Comput. Vis. , 1 , 7 - 42
    2. 2)
      • R. Szeliski , R. Zabih , D. Scharstein .
        2. Szeliski, R., Zabih, R., Scharstein, D., et al: ‘A comparative study of energy minimization methods for Markov random fields with smoothness-based priors’, IEEE Trans. Pattern Anal. Mach. Intell., 2008, 30, (6), pp. 10681080.
        . IEEE Trans. Pattern Anal. Mach. Intell. , 6 , 1068 - 1080
    3. 3)
      • M.G. Mozerov , J. Weijer .
        3. Mozerov, M.G., Weijer, J.: ‘Accurate stereo matching by two-step energy minimization’, IEEE Trans. Image Process., 2015, 24, (3), pp. 11531163.
        . IEEE Trans. Image Process. , 3 , 1153 - 1163
    4. 4)
      • T. Kanade , M. Okutomi .
        4. Kanade, T., Okutomi, M.: ‘A stereo matching algorithm with an adaptive window: theory and experiments’, IEEE Trans. Pattern Anal. Mach. Intell., 1994, 16, (9), pp. 920932.
        . IEEE Trans. Pattern Anal. Mach. Intell. , 9 , 920 - 932
    5. 5)
      • Y. Boykov , O. Veksler , R. Zabih .
        5. Boykov, Y., Veksler, O., Zabih, R.: ‘A variable window approach to early vision’, IEEE Trans. Pattern Anal. Mach. Intell., 1998, 20, (12), pp. 12831294.
        . IEEE Trans. Pattern Anal. Mach. Intell. , 12 , 1283 - 1294
    6. 6)
      • A. Fusiello , V. Roberto , E. Trucco .
        6. Fusiello, A., Roberto, V., Trucco, E.: ‘Efficient stereo with multiple windowing’. Proc. Int. Conf. Computer Vision and Pattern Recognition, Madison, Wisconsin, June 2003, pp. 556561.
        . Proc. Int. Conf. Computer Vision and Pattern Recognition , 556 - 561
    7. 7)
      • K.-J. Yoon , I.S. Kweon .
        7. Yoon, K.-J., Kweon, I.S.: ‘Adaptive support-weight approach for correspondence search’, IEEE Trans. Pattern Anal. Mach. Intell., 2006, 28, (4), pp. 650656.
        . IEEE Trans. Pattern Anal. Mach. Intell. , 4 , 650 - 656
    8. 8)
      • M. Gerrits , P. Bekaert .
        8. Gerrits, M., Bekaert, P.: ‘Local stereo matching with segmentation-based outlier rejection’. Canadian Conf. Computer and Robot Vision, Quebec, Canada, June 2006, p. 66.
        . Canadian Conf. Computer and Robot Vision , 66
    9. 9)
      • F. Tombari , S. Mattoccia , L.D. Stefano .
        9. Tombari, F., Mattoccia, S., Stefano, L.D.: ‘Segmentation-based adaptive support for accurate stereo correspondence’. Pacific-Rim Symp. on Image and Video Technology, Santiago, Chile, December 2007, pp. 427438.
        . Pacific-Rim Symp. on Image and Video Technology , 427 - 438
    10. 10)
      • A. Hosni , M. Bleyer , M. Gelautz .
        10. Hosni, A., Bleyer, M., Gelautz, M., et al: ‘Local stereo matching using geodesic support weights’. Int. Conf. Image Processing, Cairo, Egypt, November 2009, pp. 20932096.
        . Int. Conf. Image Processing , 2093 - 2096
    11. 11)
      • K. He , J. Sun , X. Tang .
        11. He, K., Sun, J., Tang, X.: ‘Guided image filtering’, IEEE Trans. Pattern Anal. Mach. Intell., 2013, 35, (6), pp. 13971409.
        . IEEE Trans. Pattern Anal. Mach. Intell. , 6 , 1397 - 1409
    12. 12)
      • D. Scharstein , H. Hirschmüller , Y. Kitajima .
        12. Scharstein, D., Hirschmüller, H., Kitajima, Y., et al: ‘High-resolution stereo datasets with subpixel-accurate ground truth’. German Conf. Pattern Recognition, Münster, Germany, September 2014, pp. 3142.
        . German Conf. Pattern Recognition , 31 - 42
    13. 13)
      • A. Hosni , M. Bleyer , M. Gelautz .
        13. Hosni, A., Bleyer, M., Gelautz, M.: ‘Secrets of adaptive support weight techniques for local stereo matching’, Comput. Vis. Image Underst., 2013, 117, (6), pp. 620632.
        . Comput. Vis. Image Underst. , 6 , 620 - 632
    14. 14)
      • D. Min , K. Sohn .
        14. Min, D., Sohn, K.: ‘Cost aggregation and occlusion handling with WLS in stereo matching’, IEEE Trans. Image Process., 2008, 17, (8), pp. 14311442.
        . IEEE Trans. Image Process. , 8 , 1431 - 1442
    15. 15)
      • M. Gong .
        15. Gong, M.: ‘A performance study on different cost aggregation approaches used in real-time stereo matching’, Int. J. Comput. Vis., 2007, 2, (75), pp. 283296.
        . Int. J. Comput. Vis. , 75 , 283 - 296
    16. 16)
      • D. Kong , H. Tao .
        16. Kong, D., Tao, H.: ‘Stereo matching via learning multiple experts behaviors’. British Machine Vision Conf., Edinburgh, United Kingdom, September 2006, pp. 110.
        . British Machine Vision Conf. , 1 - 10
    17. 17)
      • H. Hirschmüller .
        17. Hirschmüller, H.: ‘Stereo processing by semiglobal matching and mutual information’, IEEE Trans. Pattern Anal. Mach. Intell., 2007, 30, (2), pp. 328341.
        . IEEE Trans. Pattern Anal. Mach. Intell. , 2 , 328 - 341
    18. 18)
      • Q. Yang .
        18. Yang, Q.: ‘A non-local cost aggregation method for stereo matching’. Int. Conf. Computer Vision and Pattern Recognition, Providence, Rhode Island, June 2012, pp. 14021409.
        . Int. Conf. Computer Vision and Pattern Recognition , 1402 - 1409
    19. 19)
      • Q. Yang , P. Ji , D. Li .
        19. Yang, Q., Ji, P., Li, D., et al: ‘Fast stereo matching using adaptive guided filtering’, Image Vis. Comput., 2014, 32, pp. 202211.
        . Image Vis. Comput. , 202 - 211
    20. 20)
      • H. Zhu , J. Yin , D. Yuan .
        20. Zhu, H., Yin, J., Yuan, D., et al: ‘Fluctuations of disparity space image for stereo matching in untextured regions’. Int. Conf. Image Processing, Quebec, Canada, September 2015, pp. 15781582.
        . Int. Conf. Image Processing , 1578 - 1582
    21. 21)
      • H. Hirschmüller , D. Scharstein .
        21. Hirschmüller, H., Scharstein, D.: ‘Evaluation of stereo matching costs on images with radiometric differences’, IEEE Trans. Pattern Anal. Mach. Intell., 2008, 31, (9), pp. 15821599.
        . IEEE Trans. Pattern Anal. Mach. Intell. , 9 , 1582 - 1599
    22. 22)
      • M. Bleyer , C. Breiteneder . (2013)
        22. Bleyer, M., Breiteneder, C.: ‘Stereo matching-state-of-the-art and research challenges’, in Kang, S.B. (Ed.): ‘Advanced topics in computer vision’ (SpringerLondon, 2013, 1st edn.), pp. 143179.
        .
    23. 23)
      • S. Perri , P. Corsonello , G. Cocorullo .
        23. Perri, S., Corsonello, P., Cocorullo, G.: ‘Adaptive census transform: a novel hardware-oriented stereovision algorithm’, Comput. Vis. Image Underst., 2013, 117, (1), pp. 2941.
        . Comput. Vis. Image Underst. , 1 , 29 - 41
    24. 24)
      • P. Felzenszwalb , D. Huttenlocher .
        24. Felzenszwalb, P., Huttenlocher, D.: ‘Efficient graph-based image segmentation’, Int. J. Comput. Vis., 2004, 59, (2), pp. 167181.
        . Int. J. Comput. Vis. , 2 , 167 - 181
    25. 25)
      • C. Rhemann , A. Hosni , M. Bleyer .
        25. Rhemann, C., Hosni, A., Bleyer, M., et al: ‘Fast cost-volume filtering for visual correspondence and beyond’, IEEE Trans. Pattern Anal. Mach. Intell., 2013, 35, (2), pp. 504511.
        . IEEE Trans. Pattern Anal. Mach. Intell. , 2 , 504 - 511
    26. 26)
      • (2014)
        26. ‘Middlebury stereo matching test bed’, 2014. Available at http://vision.middlebury.edu/stereo/eval.
        .
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cvi.2016.0446
Loading

Related content

content/journals/10.1049/iet-cvi.2016.0446
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address