http://iet.metastore.ingenta.com
1887

Unbiased evaluation of keypoint detectors with respect to rotation invariance

Unbiased evaluation of keypoint detectors with respect to rotation invariance

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Computer Vision — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

The authors present the results of a comparative performance study of algorithms for detecting keypoints in digital images. The Harris, good features to track (GFTT), SIFT, SURF, FAST, ORB, BRISK, and the MSER keypoint detectors were tested using two types of images: POV-Ray simulated images and photographs from the Caltech 256 image dataset. They tested the repeatability of detection of the image keypoints for the evaluated detectors for a series of images with one degree rotations from 0 to 180° (3982 images in total). In the evaluation scenario they adopted an original approach in which they did not hold back a single image to be the reference image. They conclude that the most computationally complex detector, i.e. the SIFT performs best under rotation transformation of images. However, the FAST and ORB detectors, while being less computationally demanding, perform almost equally well. Hence, they can be viable choices in image processing tasks for mobile applications.

References

    1. 1)
      • B. Zhao , T. Hu , L. Shen .
        1. Zhao, B., Hu, T., Shen, L.: ‘Visual odometry – a review of approaches’. 2015 IEEE Int. Conf. Information and Automation, 2015, pp. 25692573.
        . 2015 IEEE Int. Conf. Information and Automation , 2569 - 2573
    2. 2)
      • K. Sharma , I. Moon .
        2. Sharma, K., Moon, I.: ‘Improved scale-invariant feature transform feature-matching technique-based object tracking in video sequences via a neural network and kinect sensor’, J. Electron. Imaging, 2013, 22, (3), 033017, doi: 10.1117/1.JEI.22.3.033017.
        . J. Electron. Imaging , 3
    3. 3)
      • C. Harris , M. Stephens .
        3. Harris, C., Stephens, M.: ‘A combined corner and edge detectors’. Proc. Fourth Alvey Vision Conf., 1988, pp. 147151.
        . Proc. Fourth Alvey Vision Conf. , 147 - 151
    4. 4)
      • J. Shi , C. Tomasi .
        4. Shi, J., Tomasi, C.: ‘Good features to track’, IEEE Computer Society Conf. Computer Vision and Pattern Recognition, 1994, pp. 593600.
        . IEEE Computer Society Conf. Computer Vision and Pattern Recognition , 593 - 600
    5. 5)
      • D.G. Lowe .
        5. Lowe, D.G.: ‘Distinctive image features from scale-Invariant keypoints’, Int. J. Comput. Vis., 2004, 60, (2), pp. 91110.
        . Int. J. Comput. Vis. , 2 , 91 - 110
    6. 6)
      • H. Baya , A. Essa , T. Tuytelaarsb .
        6. Baya, H., Essa, A., Tuytelaarsb, T., et al: ‘Distinctive image features from scale-Invariant keypoints’, Comput. Vis. Image Underst.., 2008, 110, (3), pp. 346359.
        . Comput. Vis. Image Underst.. , 3 , 346 - 359
    7. 7)
      • E. Rosten , T. Drummond .
        7. Rosten, E., Drummond, T.: ‘Machine learning for high-Speed corner detection’, Comput. Vis. ECCV 2006, 2006, 1, pp. 430443.
        . Comput. Vis. ECCV 2006 , 430 - 443
    8. 8)
      • E. Rublee , V. Rabaud , K. Konolige .
        8. Rublee, E., Rabaud, V., Konolige, K., et al: ‘ORB: an efficient alternative to SIFT or SURF’, 2011 IEEE Int. Conf. Computer Vision (ICCV), 2011, pp. 25642571.
        . 2011 IEEE Int. Conf. Computer Vision (ICCV) , 2564 - 2571
    9. 9)
      • S. Leutenegger , M. Chliand , R. Y. Siegwart .
        9. Leutenegger, S., Chliand, M., Siegwart, R. Y.: ‘BRISK: Binary robust invariant scalable keypoints’, IEEE Int. Conf. Computer Vision (ICCV), 2011, pp. 25482555.
        . IEEE Int. Conf. Computer Vision (ICCV) , 2548 - 2555
    10. 10)
      • J. Matas , O. Chum , M. Urban .
        10. Matas, J., Chum, O., Urban, M., et al: ‘Robust wide baseline stereo from maximally stable extremal regions’, Image Vis. Comput., 2002, 22, (10), pp. 761767.
        . Image Vis. Comput. , 10 , 761 - 767
    11. 11)
      • K Mikolajczyk , T. Tuytelaars , C. Schmid .
        11. Mikolajczyk, K, Tuytelaars, T., Schmid, C., et al: ‘A comparison of affine region detectors’, Int. J. Comput. Vis., 2005, 65, (1–2), pp. 4372.
        . Int. J. Comput. Vis. , 2 , 43 - 72
    12. 12)
      • K. Mikolajczyk , C. Schmid .
        12. Mikolajczyk, K., Schmid, C.: ‘A performance evaluation of local descriptors’, IEEE Trans. Pattern Anal. Mach. Intell., 2005, 27, (10), pp. 16151630.
        . IEEE Trans. Pattern Anal. Mach. Intell. , 10 , 1615 - 1630
    13. 13)
      • C. Schmid , R. Mohr , C. Bauckhage .
        13. Schmid, C., Mohr, R., Bauckhage, C.: ‘Evaluation of interest point detectors’, Int. J. Comput. Vis., 2000, 37, (2), pp. 151172.
        . Int. J. Comput. Vis. , 2 , 151 - 172
    14. 14)
      • M.H. Lee , I.K. Park .
        14. Lee, M.H., Park, I.K.: ‘Performance evaluation of local descriptors for affine invariant region detector’, Computer Vision - ACCV 2014 Workshops, 2015, 9008, pp. 630643.
        . Computer Vision - ACCV 2014 Workshops , 630 - 643
    15. 15)
      • P. Moreels , P. Perona .
        15. Moreels, P., Perona, P.: ‘Evaluation of features detectors and descriptors based on 3D objects’, Int. J. Comput. Vis., 2007, 73, (3), pp. 263284.
        . Int. J. Comput. Vis. , 3 , 263 - 284
    16. 16)
      • W. Hartmann , M. Havlena , K. Schindler .
        16. Hartmann, W., Havlena, M., Schindler, K.: ‘Predicting matchability’. IEEE Conf. Computer Vision and Patter Recognition, 2014, pp. 916.
        . IEEE Conf. Computer Vision and Patter Recognition , 9 - 16
    17. 17)
      • N. Khan , B. McCane , S. Mills .
        17. Khan, N., McCane, B., Mills, S.: ‘Better than SIFT?’, Mach. Vis. Appl., 2015, 26, (6), pp. 819836.
        . Mach. Vis. Appl. , 6 , 819 - 836
    18. 18)
      • F. Mualla , S. Scholl , B. Sommerfeldt .
        18. Mualla, F., Scholl, S., Sommerfeldt, B., et al: ‘Unsupervised unstained cell detection by SIFT keypoint clustering and self-labeling algorithm’, Medical Image Computing and Computer-Assisted Intervention – MICCAI 2014, 2014, 18, pp. 377384.
        . Medical Image Computing and Computer-Assisted Intervention – MICCAI 2014 , 377 - 384
    19. 19)
      • F. M. Megahed , J. A. Camelio .
        19. Megahed, F. M., Camelio, J. A.: ‘Real-time fault detection in manufacturing environments using face recognition techniques’, J. Intell. Manuf., 2012, 23, (3), pp. 393408.
        . J. Intell. Manuf. , 3 , 393 - 408
    20. 20)
      • T. Tuytelaars , K. Mikolajczyk .
        20. Tuytelaars, T., Mikolajczyk, K.: ‘Local invariant feature detectors: a survey’, Found. Trends Comput. Graph. Vis., 2007, 3, (3), pp. 177280.
        . Found. Trends Comput. Graph. Vis. , 3 , 177 - 280
    21. 21)
      • J. Heinly , E. Dunn , J. M. Frahm .
        21. Heinly, J., Dunn, E., Frahm, J. M.: ‘Comparative evalution of binary features’. 12th European Conf. Computer Vision, Florence, Italy, October 7–13, 2012, pp. 759773.
        . 12th European Conf. Computer Vision , 759 - 773
    22. 22)
      • G. Griffin , A.D. Holub , P. Perona .
        22. Griffin, G., Holub, A.D., Perona, P.: ‘The Caltech 256’, Caltech Technical Report.
        .
    23. 23)
      • A. Fernandez , O. Ghita , E. Gonzalez .
        23. Fernandez, A., Ghita, O., Gonzalez, E., et al: ‘Evaluation of robustness against rotation of LBP, CCR and ILBP features in granite texture classification’, Mach. Vis. Appl., 2011, 22, (6), pp. 913926.
        . Mach. Vis. Appl. , 6 , 913 - 926
    24. 24)
      • G. Kylberg , I.-M. Sintorn .
        24. Kylberg, G., Sintorn, I.-M.: ‘On the influence of interpolation method on rotation invariance in texture recognition’, Eurasip J. Image Video Process., 2016, 17, 112.
        . Eurasip J. Image Video Process. , 1 - 12
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cvi.2016.0434
Loading

Related content

content/journals/10.1049/iet-cvi.2016.0434
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address