access icon free Rigid blocks matching method based on contour curves and feature regions

This study proposes a blocks matching method based on contour curves and feature regions that improve the matching precision and speed with which rigid blocks with a specified thickness in point clouds are matched. The method comprises two steps: coarse matching and fine matching. In the coarse matching step, the rigid blocks are first segmented into a series of surfaces and the fracture surfaces are distinguished. Then, the contour curves of the fracture surfaces are extracted using an improved boundary growth method and the rigid blocks are coarsely matched with them. In the fine matching step, feature regions are first extracted from the fracture surfaces. Then, the centroid of each feature region is calculated and the fine matching of rigid blocks with the centroid sets is completed using an improved iterative closest point (ICP) algorithm. The improved ICP algorithm integrates the rotation angle constraint and dynamic iteration coefficient into a probability ICP algorithm, which significantly improves matching precision and speed. Experiments conducted using public blocks and Terracotta Warriors blocks indicate that the proposed method carries out rigid blocks matching more accurately and rapidly than various conventional methods.

Inspec keywords: image segmentation; image matching; probability; feature extraction; iterative methods

Other keywords: improved iterative closest point algorithm; rotation angle constraint; fine matching; contour curves; improved ICP algorithm; dynamic iteration coefficient; probability ICP algorithm; rigid block matching method; improved boundary growth method; feature regions; coarse matching; feature extraction

Subjects: Interpolation and function approximation (numerical analysis); Other topics in statistics; Other topics in statistics; Image recognition; Interpolation and function approximation (numerical analysis); Computer vision and image processing techniques

References

    1. 1)
      • 43. Merigot, Q., Ovsjanikov, M., Guibas, L. J.: ‘Voronoi-based curvature and feature estimation from point clouds’, IEEE Trans. Vis. Comput. Graphics, 2010, 17, (6), pp. 743756.
    2. 2)
      • 24. Sun, J., Zhang, J., Zhang, G.: ‘An automatic 3D point cloud registration method based on regional curvature maps’, Image Vis. Comput., 2016, 56, pp. 4958.
    3. 3)
      • 27. Hajati, F., Cheraghian, A., Gheisari, S., et al: ‘Surface geodesic pattern for 3D deformable texture matching’, Pattern Recognit., 2016, 62, pp. 2132.
    4. 4)
      • 20. Yamany, S. M., Farag, A. A.: ‘Surface signatures: an orientation independent free-form surface representation scheme for the purpose of objects registration and matching’, IEEE Trans. Pattern Anal. Mach. Intell., 2002, 24, (8), pp. 11051120.
    5. 5)
      • 15. Gwo, C. Y., Wei, C. H., Li, Y.: ‘Reconstruction of banknote fragments based on keypoint matching method’, J. Forensic Sci., 2015, 60, (4), pp. 906913.
    6. 6)
      • 6. Yue, L., Shen, T.: ‘3D expression recognition based on automatically detected facial points’, J. Beijing Inst. Technol., 2016, 36, (5), pp. 508513.
    7. 7)
      • 32. Du, S., Zheng, N., Xiong, L., et al: ‘Scaling iterative closest point algorithm for registration of m-D point sets’, J. Vis. Commun. Image Represent., 2010, 21, (5–6), pp. 442452.
    8. 8)
      • 17. Li, J., Geng, G., Liu, L.: ‘Virtual merging of fractured fragments based on constraint cluster’. Fifth Int. Conf. Computing, Communications and Networking Technologies (ICCCNT), Hefei, Anhui, October 2014, pp. 14.
    9. 9)
      • 35. Du, S., Liu, J., Zhang, C., et al: ‘Probability iterative closest point algorithm for m-D point set registration with noise(CAC)’, Neurocomputing, 2015, 157, pp. 187198.
    10. 10)
      • 19. Li, Q., Zhou, M., Geng, G.: ‘Fracture surface matching algorithm based on integral invariants’, Comput. Eng., 2012, 38, (3), pp. 156158.
    11. 11)
      • 7. Crookshank, M., Beek, M., Singh, D., et al: ‘Can a semi-automated surface matching and principal axis-based algorithm accurately quantify femoral shaft fracture alignment in six degrees of freedom’, Med. Eng. Phys., 2013, 35, (7), pp. 10281036.
    12. 12)
      • 5. Li, J., Geng, G., Zhou, M., et al: ‘A computer-assisted system for virtual relic assembling based on adjacency constraint’, J. Northwest Univ., 2016, 46, (1), pp. 5560.
    13. 13)
      • 11. Crookshank, M. C., Beek, M., Singh, D., et al: ‘Can a semi-automated surface matching and principal axis-based algorithm accurately quantify femoral shaft fracture alignment in six degrees of freedom?’, Med. Eng. Phys., 2013, 35, (7), pp. 10281036.
    14. 14)
      • 1. Markus, Y., Juho, K., Jukka, H., et al: ‘Fast and accurate multi-view reconstruction by multi-stage prioritised matching’, IET Comput. Vis., 2015, 9, (4), pp. 576587.
    15. 15)
      • 40. Li, Q., Zhang, J., Geng, G., et al: ‘Fracture surfaces matching based on contour curve’, J. Xi'an Jiaotong Univ., 2016, 50, (9), pp. 105110.
    16. 16)
      • 44. Huang, Q. X., Gelfand, N., Hofer, M., et al: ‘Reassembling fractured objects by geometric matching’, ACM Trans. Graph., 2006, 25, (3), pp. 569578.
    17. 17)
      • 48. Marani, R., Renò, V., Nitti, M., et al: ‘A modified iterative closest point algorithm for 3D point cloud registration’, Comput. Aided Civ. Infrastruct. Eng., 2016, 31, (7), pp. 515534.
    18. 18)
      • 12. Winkelbach, S., Rilk, M., Schonfelder, C.: ‘Fast random sample matching of 3d fragments’, Pattern Recognit., 2004, 3175, pp. 129136.
    19. 19)
      • 8. Bernard, F., Salamanca, L., Thunberg, J., et al: ‘Shape-aware surface reconstruction from sparse 3D point-clouds’, Med. Image Anal., 2017, 38, pp. 7789.
    20. 20)
      • 18. Li, J., Geng, G., Zhou, M., et al: ‘Surface feature optimization for virtual matching of relic fragments’, J. Comput. Aided Des. Comput. Graph., 2014, 26, (12), pp. 21492154.
    21. 21)
      • 31. Zhu, J., Du, S., Yuan, Z., et al: ‘Robust affine iterative closest point algorithm with bidirectional distance’, IET Comput. Vis., 2012, 6, (3), pp. 252261.
    22. 22)
      • 38. Shi, S., Qu, S., He, L.: ‘A new algorithm for boundary tracing’, J. Eng. Graph., 2011, 32, (3), pp. 5356.
    23. 23)
      • 42. Yang, Y. L., Lai, Y. K., Hu, S.M., et al: ‘Robust principal curvatures on multiple scales’. Symp. Geometry Processing. Eurographics, Switzerland, 2006, pp. 223226.
    24. 24)
      • 34. Han, J., Yin, P., He, Y., et al: ‘Enhanced ICP for the registration of large scale 3D environment models: an experimental study’, Sensors, 2016, 16, (2), pp. 115.
    25. 25)
      • 14. Altantsetseg, E., Matsuyama, K., Konno, K.: ‘Pairwise matching of 3D fragments using fast Fourier transform’, Vis. Comput., 2014, 30, (6–8), pp. 929938.
    26. 26)
      • 9. Winkelbach, S., Wahl, F.M.: ‘Pairwise matching of 3D fragments using cluster trees’, Int. J. Comput. Vis., 2008, 78, (1), pp. 113.
    27. 27)
      • 37. Sun, J., Zhou, L., An, L.: ‘Reasearch on point cloud segmentation using a minimum spanning tree’, J. Image Graph., 2012, 17, (7), pp. 859865.
    28. 28)
      • 4. Lin, S., Wang, D., Zhong, J., et al: ‘Approach to reassembling virtual small bronze fragments using the curvature feature’, J. Xidian Univ., 2016, 43, (6), pp. 151156.
    29. 29)
      • 28. Lucchese, L., Doretto, G., Cortelazzo, G. M.: ‘A frequency domain technique for range data registration’, IEEE Trans. Pattern Anal. Mach. Intell., 2002, 24, (11), pp. 14681484.
    30. 30)
      • 47. 3D Puzzles-Reassembling fractured objects by geometric matching’. Available at http://www.geometrie.tuwien.ac.at/ig/3dpuzzles.html, accessed 15 October 2015.
    31. 31)
      • 41. Gelfand, N., Natasha, N. J., Guibas, L.J., et al: ‘Robust global registration’. Symp. Geometry Processing, 2005, vol. 2, no. 3, p. 197.
    32. 32)
      • 46. The free encyclopedia’. Available at http://en.wikipedia.org/w/index.php?title=Rotation_matrix&oldid=624815514, accessed 20 November 2015.
    33. 33)
      • 16. Li, Q., Zhou, M., Geng, G.: ‘Fractured surfaces matching for reassembling broken solids’. Fifth Int. Symp. Computational Intelligence and Design, Hangzhou, Zhejiang, November 2012, pp. 511514.
    34. 34)
      • 30. Besl, P. J., McKay, N. D.: ‘A method for registration of 3-D shapes’, IEEE Trans. Pattern Anal. Mach. Intell., 1992, 14, (2), pp. 239256.
    35. 35)
      • 22. Malassiotis, S., Strintzis, M. G.: ‘Snapshots: a novel local surface descriptor and matching algorithm for robust 3D surface alignment’, IEEE Trans. Pattern Anal. Mach. Intell., 2007, 29, (7), pp. 12851290.
    36. 36)
      • 2. Zhang, W., Chen, Y., Wang, H., et al: ‘Efficient registration of terrestrial LiDAR scans using a coarse-to-fine strategy for forestry applications’, Agric. For. Meteorol., 2016, 225, pp. 823.
    37. 37)
      • 25. Yang, J., Cao, Z., Zhang, Q.: ‘A fast and robust local descriptor for 3D point cloud registration’, Inf. Sci., 2016, 346, pp. 163179.
    38. 38)
      • 21. Mian, A. S., Bennamoun, M., Owens, R. A.: ‘A novel representation and feature matching algorithm for automatic pairwise registration of range images’, Int. J. Comput. Vis., 2006, 66, (1), pp. 1940.
    39. 39)
      • 23. Novatnack, J., Nishino, K.: ‘Scale-dependent/invariant local 3D shape descriptors for fully automatic registration of multiple sets of range images’. European Conf. Computer Vision (ECCV), 2008, vol. 5304, pp. 440453.
    40. 40)
      • 36. Bergström, P.: ‘Reliable updates of the transformation in the iterative closest point algorithm’, Comput. Optim. Appl., 2016, 63, (2), pp. 543557.
    41. 41)
      • 39. Ding, A., Zhou, L., Li, P.: ‘Curves and surfaces’, in Yan, L., Yu, L., Zhu, J. (Eds.): ‘Computer graphics’ (Xi'an Electronic and Science University Press, Xi'an, China, 2005, 1st edn.), pp. 99104.
    42. 42)
      • 3. Gao, Y., Wang, M., Ji, R., et al: ‘3-D object retrieval with Hausdorff distance learning’, IEEE Trans. Ind. Electron., 2014, 61, (4), pp. 20882098.
    43. 43)
      • 13. Corey, T. F., Benedict, B., Tim, W., et al: ‘Multi-feature matching of fresco fragment’, ACM Trans. Graph., 2010, 29, (6), pp. 112.
    44. 44)
      • 26. Yu, X., Gao, Y., Zhou, J.: ‘Sparse 3D directional vertices vs continuous 3D curves: efficient 3D surface matching and its application for single model face recognition’, Pattern Recognit., 2016, 65, pp. 296306.
    45. 45)
      • 33. Zhao, L., Shen, X., Long, X.: ‘Robust wrinkle-aware non-rigid registration for triangle meshes of hand with rich and dynamic details’, Comput. Graph., 2012, 36, (5), pp. 577583.
    46. 46)
      • 10. Eduardo, V. V., Carlos, S. B.: ‘A discrete approach for pairwise matching of archaeological fragments’, ACM J. Comput. Cult. Herit., 2014, 7, (3), pp. 115.
    47. 47)
      • 29. Funkhouser, T., Min, P., Kazhdan, M., et al: ‘A search engine for 3D models’, ACM Trans. Graph., 2003, 22, (1), pp. 83105.
    48. 48)
      • 45. Pottmann, H., Wallner, J., Huang, Q. X., et al: ‘Integral invariants for robust geometry processing’, Comput. Aided Geom. Des., 2009, 26, (1), pp. 3760.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cvi.2016.0392
Loading

Related content

content/journals/10.1049/iet-cvi.2016.0392
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading