http://iet.metastore.ingenta.com
1887

Adaptive skin detection using face location and facial structure estimation

Adaptive skin detection using face location and facial structure estimation

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Computer Vision — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Reliable and accurate facial skin extraction is the most critical and urgent issue for adaptive skin detection. Aiming at resolving this issue, the authors propose an adaptive skin detection method using face location and facial structure estimation. The face location algorithm is developed to improve the reliability of face detection and extract a face region with a high proportion of skin. Facial structure estimation is exploited to further reduce the impact of non-skin factors on dynamic skin colour modelling. The colour space distribution model of extracted facial skin is very close to that of real facial skin. Finally, the skin in an image is obtained by using a hybrid colour space strategy. Extensive experimental comparisons with some state-of-the-art methods have shown the superior performance of the proposed method.

References

    1. 1)
      • Y.K. Lai , S.M. Lee .
        1. Lai, Y.K., Lee, S.M.: ‘Wide color-gamut improvement with skin protection using content-based analysis for display systems’, J. Disp. Technol., 2013, 9, (3), pp. 146153.
        . J. Disp. Technol. , 3 , 146 - 153
    2. 2)
      • H.R. Shakir , L.E. George , G.K. Tuama .
        2. Shakir, H.R., George, L.E., Tuama, G.K.: ‘Single face detection based on skin color and edge detection’, Int. J. Comput. Sci. Mob. Comput., 2015, 4, (3), pp. 442450.
        . Int. J. Comput. Sci. Mob. Comput. , 3 , 442 - 450
    3. 3)
      • R. Mohanty , M.V. Raghunadh .
        3. Mohanty, R., Raghunadh, M.V.: ‘Skin color segmentation based face detection using multi-color space’, Int. J. Adv. Res. Comput. Commun. Eng., 2016, 5, (5), pp. 470475.
        . Int. J. Adv. Res. Comput. Commun. Eng. , 5 , 470 - 475
    4. 4)
      • N. Razmjooy , B.S. Mousavi , F. Soleymani .
        4. Razmjooy, N., Mousavi, B.S., Soleymani, F.: ‘A hybrid neural network imperialist competitive algorithm for skin color segmentation’, Math. Comput. Model., 2013, 57, (3), pp. 848856.
        . Math. Comput. Model. , 3 , 848 - 856
    5. 5)
      • N.A. Ibraheem , R.Z. Khan , M.M. Hasan .
        5. Ibraheem, N.A., Khan, R.Z., Hasan, M.M.: ‘Comparative study of skin color based segmentation techniques’, Int. J. Appl. Inf. Syst., 2013, 5, (10), pp. 2438.
        . Int. J. Appl. Inf. Syst. , 10 , 24 - 38
    6. 6)
      • H.K. Al-Mohair , J.M. Saleh , S.A. Suandi .
        6. Al-Mohair, H.K., Saleh, J.M., Suandi, S.A.: ‘Hybrid human skin detection using neural network and K-means clustering technique’, Appl. Soft Comput., 2015, 33, pp. 337347.
        . Appl. Soft Comput. , 337 - 347
    7. 7)
      • P. Kakumanu , S. Makrogiannis , N. Bourbakis .
        7. Kakumanu, P., Makrogiannis, S., Bourbakis, N.: ‘A survey of skin-color modeling and detection methods’, Pattern Recognit., 2007, 40, (3), pp. 11061122.
        . Pattern Recognit. , 3 , 1106 - 1122
    8. 8)
      • Y. Wang , B. Yuan .
        8. Wang, Y., Yuan, B.: ‘A novel approach for human face detection from color images under complex background’, Pattern Recognit., 2001, 34, (10), pp. 19831992.
        . Pattern Recognit. , 10 , 1983 - 1992
    9. 9)
      • J.A. Ojo , S.A. Adeniran .
        9. Ojo, J.A., Adeniran, S.A.: ‘Illumination invariant face detection using hybrid skin segmentation method’, Eur. J. Comput. Sci. Inf. Technol., 2013, 1, (4), pp. 19.
        . Eur. J. Comput. Sci. Inf. Technol. , 4 , 1 - 9
    10. 10)
      • M.J. Jones , J.M. Rehg .
        10. Jones, M.J., Rehg, J.M.: ‘Statistical color models with application to skin detection’, Int. J. Comput. Vis., 2002, 46, (1), pp. 8196.
        . Int. J. Comput. Vis. , 1 , 81 - 96
    11. 11)
      • M. Hajiarbabi , A. Agah .
        11. Hajiarbabi, M., Agah, A.: ‘Human skin color detection using neural networks’, J. Intell. Syst., 2015, 24, (4), pp. 425436.
        . J. Intell. Syst. , 4 , 425 - 436
    12. 12)
      • R. Khan , A. Hanbury , J. Stoettinger .
        12. Khan, R., Hanbury, A., Stoettinger, J.: ‘Skin detection: a random forest approach’. Proc. Int. Conf. Image Processing, 2010, pp. 46134616.
        . Proc. Int. Conf. Image Processing , 4613 - 4616
    13. 13)
      • L. Man , W. Xiao-yu , M. Hui-ling .
        13. Man, L., Xiao-yu, W., Hui-ling, M.: ‘Face automatic detection based on elliptic skin model and improved AdaBoost algorithm’, Int. J. Signal Process. Image Process. Pattern Recognit., 2015, 8, (2), pp. 227234.
        . Int. J. Signal Process. Image Process. Pattern Recognit. , 2 , 227 - 234
    14. 14)
      • B. Zafarifar , T. Van Den Kerkhof , P.H.N. de With .
        14. Zafarifar, B., Van Den Kerkhof, T., de With, P.H.N.: ‘Texture-adaptive skin detection for TV and its real-time implementation on DSP and FPGA’, IEEE Trans. Consum. Electron., 2012, 58, (1), pp. 161169.
        . IEEE Trans. Consum. Electron. , 1 , 161 - 169
    15. 15)
      • M. Kawulok , J. Kawulok , J. Nalepa .
        15. Kawulok, M., Kawulok, J., Nalepa, J., et al: ‘Skin detection using spatial analysis with adaptive seed’. Proc. Int. Conf. Image Processing, 2013, pp. 37203724.
        . Proc. Int. Conf. Image Processing , 3720 - 3724
    16. 16)
      • B.K. Chakraborty , M.K. Bhuyan , S. Kumar .
        16. Chakraborty, B.K., Bhuyan, M.K., Kumar, S.: ‘Combining image and global pixel distribution model for skin colour segmentation’, Pattern Recognit. Lett., 2017, 88, pp. 3340.
        . Pattern Recognit. Lett. , 33 - 40
    17. 17)
      • L. Liu , N. Sang , S. Yang .
        17. Liu, L., Sang, N., Yang, S., et al: ‘Real-time skin color detection under rapidly changing illumination conditions’, IEEE Trans. Consum. Electron., 2011, 57, (3), pp. 12951302.
        . IEEE Trans. Consum. Electron. , 3 , 1295 - 1302
    18. 18)
      • S. Bilal , R. Akmeliawati , M.J.E. Salami .
        18. Bilal, S., Akmeliawati, R., Salami, M.J.E., et al: ‘Dynamic approach for real-time skin detection’, J. Real-Time Image Process., 2015, 10, (2), pp. 371385.
        . J. Real-Time Image Process. , 2 , 371 - 385
    19. 19)
      • S. Bianco , F. Gasparini , R. Schettini .
        19. Bianco, S., Gasparini, F., Schettini, R.: ‘Adaptive skin classification using face and body detection’, IEEE Trans. Image Process., 2015, 24, (12), pp. 47564765.
        . IEEE Trans. Image Process. , 12 , 4756 - 4765
    20. 20)
      • W.R. Tan , C.S. Chan , P. Yogarajah .
        20. Tan, W.R., Chan, C.S., Yogarajah, P., et al: ‘A fusion approach for efficient human skin detection’, IEEE Trans. Ind. Inf., 2012, 8, (1), pp. 138147.
        . IEEE Trans. Ind. Inf. , 1 , 138 - 147
    21. 21)
      • C.C. Hsieh , D.H. Liou , W.R. Lai .
        21. Hsieh, C.C., Liou, D.H., Lai, W.R.: ‘Enhanced face-based adaptive skin color model’, J. Appl. Sci. Eng., 2012, 15, (2), pp. 167176.
        . J. Appl. Sci. Eng. , 2 , 167 - 176
    22. 22)
      • P. Viola , M.J. Jones .
        22. Viola, P., Jones, M.J.: ‘Robust real-time face detection’, Int. J. Comput. Vis., 2004, 57, (2), pp. 137154.
        . Int. J. Comput. Vis. , 2 , 137 - 154
    23. 23)
      • R. Lienhart , A. Kuranov , V. Pisarevsky .
        23. Lienhart, R., Kuranov, A., Pisarevsky, V.: ‘Empirical analysis of detection cascade of boosted classifiers for rapid object detection’. Proc. Joint Pattern Recognition Symp., 2003, pp. 297304.
        . Proc. Joint Pattern Recognition Symp. , 297 - 304
    24. 24)
      • N. Dalal , B. Triggs .
        24. Dalal, N., Triggs, B.: ‘Histograms of oriented gradients for human detection’. Proc. IEEE Conf. Computer Vision and Pattern Recognition, 2005, pp. 886893.
        . Proc. IEEE Conf. Computer Vision and Pattern Recognition , 886 - 893
    25. 25)
      • C.C. Chang , C.J. Lin .
        25. Chang, C.C., Lin, C.J.: ‘LIBSVM: a library for support vector machines’, ACM Trans. Intel. Syst. Technol., 2011, 2, (3), pp. 127.
        . ACM Trans. Intel. Syst. Technol. , 3 , 1 - 27
    26. 26)
      • M. Eichner , M. Marin-Jimenez , A. Zisserman .
        26. Eichner, M., Marin-Jimenez, M., Zisserman, A., et al: ‘2D articulated human pose estimation and retrieval in (almost) unconstrained still images’, Int. J. Comput. Vis., 2012, 99, (2), pp. 190214.
        . Int. J. Comput. Vis. , 2 , 190 - 214
    27. 27)
      • J. Almazán , A. Gordo , A. Fornés .
        27. Almazán, J., Gordo, A., Fornés, A., et al: ‘Segmentation-free word spotting with exemplar SVMs’, Pattern Recognit., 2014, 47, (12), pp. 39673978.
        . Pattern Recognit. , 12 , 3967 - 3978
    28. 28)
      • Y. Luo , Y.P. Guan .
        28. Luo, Y., Guan, Y.P.: ‘Enhanced facial texture illumination normalization for face recognition’, Appl. Opt., 2015, 54, (22), pp. 68876894.
        . Appl. Opt. , 22 , 6887 - 6894
    29. 29)
      • J. Yan , X. Zhang , Z. Lei .
        29. Yan, J., Zhang, X., Lei, Z., et al: ‘Face detection by structural models’, Image Vis. Comput., 2014, 32, (10), pp. 790799.
        . Image Vis. Comput. , 10 , 790 - 799
    30. 30)
      • T.L. Berg , A.C. Berg , J. Edwards .
        30. Berg, T.L., Berg, A.C., Edwards, J., et al: ‘Who's in the picture’, Adv. Neural Inf. Process. Syst., 2005, 17, pp. 137144.
        . Adv. Neural Inf. Process. Syst. , 137 - 144
    31. 31)
      • Y. Luo , Y.P. Guan .
        31. Luo, Y., Guan, Y.P.: ‘Motion objects segmentation based on structural similarity background modelling’, IET Comput. Vis., 2015, 9, (4), pp. 476488.
        . IET Comput. Vis. , 4 , 476 - 488
    32. 32)
      • R. Bergman , H. Nachlieli .
        32. Bergman, R., Nachlieli, H.: ‘Perceptual segmentation: combining image segmentation with object tagging’, IEEE Trans. Image Process., 2011, 20, (6), pp. 16681681.
        . IEEE Trans. Image Process. , 6 , 1668 - 1681
    33. 33)
      • A. Amjad , A. Griffiths , M.N. Patwary .
        33. Amjad, A., Griffiths, A., Patwary, M.N.: ‘Multiple face detection algorithm using colour skin modelling’, IET Image Process., 2012, 6, (8), pp. 10931101.
        . IET Image Process. , 8 , 1093 - 1101
    34. 34)
      • I. Fasel , B. Fortenberry , J. Movellan .
        34. Fasel, I., Fortenberry, B., Movellan, J.: ‘A generative framework for real time object detection and classification’, Comput. Vis. Image Underst., 2005, 98, (1), pp. 182210.
        . Comput. Vis. Image Underst. , 1 , 182 - 210
    35. 35)
      • X. Zhu , D. Ramanan .
        35. Zhu, X., Ramanan, D.: ‘Face detection, pose estimation, and landmark localization in the wild’. Proc. IEEE Conf. Computer Vision and Pattern Recognition, 2012, pp. 28792886.
        . Proc. IEEE Conf. Computer Vision and Pattern Recognition , 2879 - 2886
    36. 36)
      • S. Liao , A.K. Jain , S.Z. Li .
        36. Liao, S., Jain, A.K., Li, S.Z.: ‘A fast and accurate unconstrained face detector’, IEEE Trans. Pattern Anal. Mach. Intell., 2016, 38, (2), pp. 211223.
        . IEEE Trans. Pattern Anal. Mach. Intell. , 2 , 211 - 223
    37. 37)
      • Q. Zhu , K.T. Cheng , C.T. Wu .
        37. Zhu, Q., Cheng, K.T., Wu, C.T.: ‘A unified adaptive approach to accurate skin detection’. Proc. Int. Conf. Image Processing, 2004, pp. 11891192.
        . Proc. Int. Conf. Image Processing , 1189 - 1192
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cvi.2016.0295
Loading

Related content

content/journals/10.1049/iet-cvi.2016.0295
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address