access icon free Large margin relative distance learning for person re-identification

Distance metric learning has achieved great success in person re-identification. Most existing methods that learn metrics from pairwise constraints suffer the problem of imbalanced data. In this study, the authors present a large margin relative distance learning (LMRDL) method which learns the metric from triplet constraints, so that the problem of imbalanced sample pairs can be bypassed. Different from existing triplet-based methods, LMRDL employs an improved triplet loss that enforces penalisation on the triplets with minimal inter-class distance, and this leads to a more stringent constraint to guide the learning. To suppress the large variations of pedestrian's appearance in different camera views, the authors propose to learn the metric over the intra-class subspace. The proposed method is formulated as a logistic metric learning problem with positive semi-definite constraint, and the authors derive an efficient optimisation scheme to solve it based on the accelerated proximal gradient approach. Experimental results show that the proposed method achieves state-of-the-art performance on three challenging datasets (VIPeR, PRID450S, and GRID).

Inspec keywords: pedestrians; image matching; learning (artificial intelligence); gradient methods

Other keywords: imbalanced data; proximal gradient approach; imbalanced sample pairs; large margin relative distance learning; person reidentification; triplet constraints; LMRDL; logistic metric learning problem; optimisation scheme; distance metric learning

Subjects: Image recognition; Optimisation techniques; Optimisation techniques; Knowledge engineering techniques; Computer vision and image processing techniques

References

    1. 1)
      • 20. Yang, Y., Yang, J., Yan, J., et al: ‘Salient color names for person re-identification’. Proc. of European Conf. on Computer Vision, 2014, pp. 536551.
    2. 2)
      • 21. Liao, S., Hu, Y., Zhu, X., et al: ‘Person re-identification by local maximal occurrence representation and metric learning’. Proc. of Computer Vision and Pattern Recognition, 2015, pp. 21972206.
    3. 3)
      • 27. Luo, P., Wang, X., Tang, X.: ‘Pedestrian parsing via deep decompositional network’. Proc. of Computer Vision and Pattern Recognition, 2013, pp. 26482655.
    4. 4)
      • 1. Hirzer, M., Roth, P.M., Bischof, H.: ‘Person re-identification by efficient impostor-based metric learning’. Proc. of IEEE Conf. on Advanced Video and Signal-Based Surveillance, 2012, pp. 203208.
    5. 5)
      • 16. Farenzena, M., Bazzani, L., Perina, A., et al: ‘Person re-identification by symmetry-driven accumulation of local features’. Proc. of Computer Vision and Pattern Recognition, 2010, pp. 23602367.
    6. 6)
      • 30. Zhang, Y., Li, B., Lu, H., et al: ‘Sample-specific SVM learning for person re-identification’. Proc. of Computer Vision and Pattern Recognition, 2016, pp. 12781287.
    7. 7)
      • 13. Doretto, G., Sebastian, T., Tu, P., et al: ‘Appearance-based person reidentification in camera networks: problem overview and current approaches’, J. Ambient Intell. Human Comput., 2011, 2, (2), pp. 127151.
    8. 8)
      • 2. Köstinger, M., Hirzer, M., Wohlhart, R.P.M., et al: ‘Large scale metric learning from equivalence constraints’. Proc. of Computer Vision and Pattern Recognition, 2012, pp. 22882295.
    9. 9)
      • 5. Mignon, A., Jurie, F.: ‘PCCA: A new approach for distance learning from sparse pairwise constraints’. Proc. of Computer Vision and Pattern Recognition, 2012, pp. 26662672.
    10. 10)
      • 28. Zhang, L., Xiang, T., Gong, S.: ‘Learning a discriminative null space for person re-identification’. Proc. of Computer Vision and Pattern Recognition, 2016, pp. 12391248.
    11. 11)
      • 18. Kviatkovsky, I., Adam, A., Rivlin, E.: ‘Color invariants for person reidentification’, IEEE Trans. Pattern Anal. Mach. Intell., 2013, 35, (7), pp. 16221634.
    12. 12)
      • 36. Liu, X., Wang, H., Wu, Y., et al: ‘An ensemble color model for human re-identification’. Proc. of Applications of Computer Vision, 2015, pp. 868875.
    13. 13)
      • 9. Weinberger, K.Q., Saul, L.K.: ‘Distance metric learning for large margin nearest neighbor classification’, J. Mach. Learn. Res., 2009, 10, pp. 207244.
    14. 14)
      • 26. Chen, C.L., Xiang, T., Gong, S.: ‘Multi-camera activity correlation analysis’. Proc. of Computer Vision and Pattern Recognition, 2009, pp. 19881995.
    15. 15)
      • 14. Vezzani, R., Baltieri, D., Cucchiara, R.: ‘People reidentification in surveillance and forensics:a survey’, ACM Comput. Surv., 2013, 46, (2), pp. 137.
    16. 16)
      • 15. Henggeler, S.W., Schoenwald, S.K., Liao, J.G., et al: ‘A survey of approaches and trends in person re-identification’, Image Vis. Comput., 2014, 32, (4), pp. 270286.
    17. 17)
      • 24. Gray, D., Tao, H.: ‘Viewpoint invariant pedestrian recognition with an ensemble of localized features’. Proc. of European Conf. on Computer Vision, 2008, pp. 262275.
    18. 18)
      • 22. Xing, E.P., Ng, A.Y., Jordan, M.I., et al: ‘Distance metric learning, with application to clustering with side-information’, Adv. Neural Inf. Process. Syst., 2002, 15, pp. 505512.
    19. 19)
      • 23. Guillaumin, M., Verbeek, J., Schmid, C.: ‘Is that you? metric learning approaches for face identification’. Proc. of Int. Conf. on Computer Vision, 2009, pp. 498505.
    20. 20)
      • 3. Li, Z., Chang, S., Liang, F., et al: ‘Learning locally-adaptive decision functions for person verification’. Proc. of Computer Vision and Pattern Recognition, 2013, pp. 36103617.
    21. 21)
      • 31. Xiao, T., Li, H., Ouyang, W., et al: ‘Learning deep feature representations with domain guided dropout for person re-identification’. Proc. of Computer Vision and Pattern Recognition, 2016.
    22. 22)
      • 39. Chen, C.L., Liu, C., Gong, S.: ‘Person re-identification by manifold ranking’. Proc. of Int. Conf. on Image Processing, 2013, pp. 35673571.
    23. 23)
      • 11. Parikh, N., Boyd, S.: ‘Proximal algorithms’, Found. Trends Optim., 2014, 1, (3), pp. 127239.
    24. 24)
      • 19. Ma, B., Su, Y., Jurie, F.: ‘Covariance descriptor based on bio-inspired features for person re-identification and face verification’, Image Vis. Comput., 2014, 32, (6), pp. 379390.
    25. 25)
      • 37. Chen, D., Yuan, Z., Hua, G., et al: ‘Similarity learning on an explicit polynomial kernel feature map for person re-identification’. Proc. of Computer Vision and Pattern Recognition, 2015, pp. 15651573.
    26. 26)
      • 12. Tseng, P.: ‘On accelerated proximal gradient methods for convex-concave optimization’, submitted toSIAM J. Optim., 2008.
    27. 27)
      • 34. Paisitkriangkrai, S., Wu, L., Shen, C., et al: ‘Structured learning of metric ensembles with application to person re-identification’, Comput. Vis. Image Underst., 2017, 156, pp. 5165.
    28. 28)
      • 33. Zhao, R., Ouyang, W., Wang, X.: ‘Learning mid-level filters for person re-identification’. Proc. of Computer Vision and Pattern Recognition, 2014, pp. 144151.
    29. 29)
      • 10. Cheng, D., Gong, Y., Zhou, S., et al: ‘Person re-identification by multi-channel parts-based cnn with improved triplet loss function’. Proc. of Computer Vision and Pattern Recognition, 2016, pp. 13351344.
    30. 30)
      • 32. Zhao, R., Ouyang, W., Wang, X.: ‘Person re-identification by salience matching’. Proc. of Int. Conf. on Computer Vision, 2013, pp. 25282535.
    31. 31)
      • 35. Chen, Y.C., Zheng, W.S., Lai, J.: ‘Mirror representation for modeling view-specific transform in person re-identification’. Proc. of Int. Conf. on Artificial Intelligence, 2015, pp. 34023408.
    32. 32)
      • 29. Davis, J.V., Kulis, B., Jain, P., et al: ‘Information-theoretic metric learning’. Proc. of Int. Conf. on Machine learning, 2007, pp. 209216.
    33. 33)
      • 4. Liao, S., Li, S.Z.: ‘Efficient psd constrained asymmetric metric learning for person re-identification’. Proc. of Int. Conf. on Computer Vision, 2015, pp. 36853693.
    34. 34)
      • 25. Roth, P.M., Hirzer, M., Köstinger, M., et al: ‘Mahalanobis distance learning for person re-identification’, in Gong, S. (Ed): ‘Person Re-Identification’ (Springer Press, 2014), pp. 247267.
    35. 35)
      • 17. Cheng, D.S., Cristani, M., Stoppa, M., et al: ‘Custom pictorial structures for re-identification’. Proc. of BMVC, 2011, pp. 68.168.11.
    36. 36)
      • 8. Wang, F., Zuo, W., Lin, L., et al: ‘Joint learning of single-image and cross-image representations for person re-identification’. Proc. of Computer Vision and Pattern Recognition, 2016, pp. 12881296.
    37. 37)
      • 7. Ding, S., Lin, L., Wang, G., et al: ‘Deep feature learning with relative distance comparison for person re-identification’, Pattern Recognit., 2015, 48, (10), pp. 29933003.
    38. 38)
      • 6. Zheng, W.S., Gong, S., Xiang, T.: ‘Reidentification by relative distance comparison’, IEEE Trans. Pattern Anal. Mach. Intell., 2013, 35, (3), pp. 653668.
    39. 39)
      • 38. Ma, L., Yang, X., Tao, D.: ‘Person re-identification over camera networks using multi-task distance metric learning’, IEEE Trans. Image Process., 2014, 23, (8), pp. 36563670.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cvi.2016.0265
Loading

Related content

content/journals/10.1049/iet-cvi.2016.0265
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading