http://iet.metastore.ingenta.com
1887

Meta-action descriptor for action recognition in RGBD video

Meta-action descriptor for action recognition in RGBD video

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Computer Vision — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Action recognition is one of the hottest research topics in computer vision. Recent methods represent actions based on global or local video features. These approaches, however, lack semantic structure and may not provide a deep insight into the essence of an action. In this work, the authors argue that semantic clues, such as joint positions and part-level motion clustering, help verify actions. To this end, a meta-action descriptor for action recognition in RGBD video is proposed in this study. Specifically, two discrimination-based strategies – dynamic and discriminative part clustering – are introduced to improve accuracy. Experiments conducted on the MSR Action 3D dataset show that the proposed method significantly outperforms the methods without joint position semantic.

References

    1. 1)
      • R. Poppe .
        1. Poppe, R.: ‘A survey on vision-based human action recognition’, Image Vis. Comput., 2010, 28, (6), pp. 976990.
        . Image Vis. Comput. , 6 , 976 - 990
    2. 2)
      • L. Chen , H. Wei , J. Ferryman .
        2. Chen, L., Wei, H., Ferryman, J.: ‘A survey of human motion analysis using depth imagery’, Pattern Recognit. Lett., 2013, 34, (15), pp. 19952006.
        . Pattern Recognit. Lett. , 15 , 1995 - 2006
    3. 3)
      • J. Shotton , A. Fitzgibbon , M. Cook .
        3. Shotton, J., Fitzgibbon, A., Cook, M., et al: ‘Real-time human pose recognition in parts from single depth images’. IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), 2011, 2011, pp. 12971304.
        . IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), 2011 , 1297 - 1304
    4. 4)
      • J. Shotton , R. Girshick , A. Fitzgibbon .
        4. Shotton, J., Girshick, R., Fitzgibbon, A., et al: ‘Efficient human pose estimation from single depth images’, IEEE Trans. Pattern Anal. Mach. Intell., 2012, 35, (12), pp. 28212840.
        . IEEE Trans. Pattern Anal. Mach. Intell. , 12 , 2821 - 2840
    5. 5)
      • J. Wang , Z. Liu , Y. Wu .
        5. Wang, J., Liu, Z., Wu, Y., et al: ‘Mining actionlet ensemble for action recognition with depth cameras’. IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), 2012, 2012, pp. 12901297.
        . IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), 2012 , 1290 - 1297
    6. 6)
      • H. Rahmani , A. Mahmood , D.Q. Huynh .
        6. Rahmani, H., Mahmood, A., Huynh, D.Q., et al: ‘Hopc: histogram of oriented principal components of 3d pointclouds for action recognition’. Computer Vision-ECCV 2014, 2014, pp. 742757.
        . Computer Vision-ECCV 2014 , 742 - 757
    7. 7)
      • F. Ofli , R. Chaudhry , G. Kurillo .
        7. Ofli, F., Chaudhry, R., Kurillo, G., et al: ‘Sequence of the most informative joints (smij): a new representation for human skeletal action recognition’, J. Vis. Commun. Image Represent., 2014, 25, (1), pp. 2438.
        . J. Vis. Commun. Image Represent. , 1 , 24 - 38
    8. 8)
      • X. Yang , Y. Tian .
        8. Yang, X., Tian, Y.: ‘Super normal vector for activity recognition using depth sequences’. IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), 2014, 2014, pp. 804811.
        . IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), 2014 , 804 - 811
    9. 9)
      • W. Li , Z. Zhang , Z. Liu .
        9. Li, W., Zhang, Z., Liu, Z.: ‘Action recognition based on a bag of 3d points’. IEEE Computer Society Conf. on Computer Vision and Pattern Recognition Workshops (CVPRW), 2010, 2010, pp. 914.
        . IEEE Computer Society Conf. on Computer Vision and Pattern Recognition Workshops (CVPRW), 2010 , 9 - 14
    10. 10)
      • A. Jalal , M.Z. Uddin , J.T. Kim .
        10. Jalal, A., Uddin, M.Z., Kim, J.T., et al: ‘Recognition of human home activities via depth silhouettes and R transformation for smart homes’, Indoor Built Environ., 2012, 21, (1), pp. 184190.
        . Indoor Built Environ. , 1 , 184 - 190
    11. 11)
      • C. Lu , J. Jia , C.K. Tang .
        11. Lu, C., Jia, J., Tang, C.K.: ‘Range-sample depth feature for action recognition’. IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), 2014, 2014, pp. 772779.
        . IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), 2014 , 772 - 779
    12. 12)
      • A.W. Vieira , E.R. Nascimento , G.L. Oliveira .
        12. Vieira, A.W., Nascimento, E.R., Oliveira, G.L., et al: ‘Stop: Space-time occupancy patterns for 3d action recognition from depth map sequences’. CIARP, 2012 (LNCS, 7441), pp. 252259.
        . CIARP , 252 - 259
    13. 13)
      • J. Wang , Z. Liu , J. Chorowski .
        13. Wang, J., Liu, Z., Chorowski, J., et al: ‘Robust 3d action recognition with random occupancy patterns’. Proc. of the 12th European Conf. on Computer Vision – Volume Part II, ECCV'12, Berlin, Heidelberg, 2012, pp. 872885.
        . Proc. of the 12th European Conf. on Computer Vision – Volume Part II, ECCV'12 , 872 - 885
    14. 14)
      • X. Yang , C. Zhang , Y. Tian .
        14. Yang, X., Zhang, C., Tian, Y.: ‘Recognizing actions using depth motion maps-based histograms of oriented gradients’. Proc. of the 20th ACM Int. Conf. on Multimedia, 2012, pp. 10571060.
        . Proc. of the 20th ACM Int. Conf. on Multimedia , 1057 - 1060
    15. 15)
      • P. Wang , W. Li , Z. Gao .
        15. Wang, P., Li, W., Gao, Z., et al: ‘Convnets-based action recognition from depth maps through virtual cameras and pseudocoloring’. Proc. of the 23rd ACM Int. Conf. on Multimedia, MM'15, New York, USA, 2015, pp. 11191122.
        . Proc. of the 23rd ACM Int. Conf. on Multimedia, MM'15 , 1119 - 1122
    16. 16)
      • R. Yang , R. Yang .
        16. Yang, R., Yang, R.: ‘Dmm-pyramid based deep architectures for action recognition with depth cameras’. 12th Asian Conf. on Computer Vision – ACCV 2014, 2014, pp. 3749.
        . 12th Asian Conf. on Computer Vision – ACCV 2014 , 37 - 49
    17. 17)
      • O. Oreifej , Z. Liu .
        17. Oreifej, O., Liu, Z.: ‘Hon4d: Histogram of oriented 4d normals for activity recognition from depth sequences’. IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), 2013, 2013, pp. 716723.
        . IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), 2013 , 716 - 723
    18. 18)
      • A. Krizhevsky , I. Sutskever , G.E. Hinton .
        18. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ‘Imagenet classification with deep convolutional neural networks’. Advances in Neural Information Processing Systems, 2012, pp. 10971105.
        . Advances in Neural Information Processing Systems , 1097 - 1105
    19. 19)
      • L. Xia , C.C. Chen , J. Aggarwal .
        19. Xia, L., Chen, C.C., Aggarwal, J.: ‘View invariant human action recognition using histograms of 3d joints’. IEEE Computer Society Conf. on Computer Vision and Pattern Recognition Workshops (CVPRW), 2012, 2012, pp. 2027.
        . IEEE Computer Society Conf. on Computer Vision and Pattern Recognition Workshops (CVPRW), 2012 , 20 - 27
    20. 20)
      • X. Yang , Y. Tian .
        20. Yang, X., Tian, Y.: ‘Eigenjoints-based action recognition using Naive-Bayes-nearest neighbor’. IEEE Computer Society Conf. on Computer Vision and Pattern Recognition Workshops (CVPRW), 2012, 2012, pp. 1419.
        . IEEE Computer Society Conf. on Computer Vision and Pattern Recognition Workshops (CVPRW), 2012 , 14 - 19
    21. 21)
      • R. Vemulapalli , F. Arrate , R. Chellappa .
        21. Vemulapalli, R., Arrate, F., Chellappa, R.: ‘Human action recognition by representing 3d skeletons as points in a lie group’. IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), 2014, 2014, pp. 588595.
        . IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), 2014 , 588 - 595
    22. 22)
      • A. Shahroudy , T.T. Ng , Q. Yang .
        22. Shahroudy, A., Ng, T.T., Yang, Q., et al: ‘Multimodal multipart learning for action recognition in depth videos’, IEEE Trans. Pattern Anal. Mach. Intell., 2016, 38, (10), pp. 21232129.
        . IEEE Trans. Pattern Anal. Mach. Intell. , 10 , 2123 - 2129
    23. 23)
      • J. Luo , W. Wang , H. Qi .
        23. Luo, J., Wang, W., Qi, H.: ‘Group sparsity and geometry constrained dictionary learning for action recognition from depth maps’. IEEE Int. Conf. on Computer Vision (ICCV), 2013, 2013, pp. 18091816.
        . IEEE Int. Conf. on Computer Vision (ICCV), 2013 , 1809 - 1816
    24. 24)
      • J. Wang , X. Nie , Y. Xia .
        24. Wang, J., Nie, X., Xia, Y., et al: ‘Cross-view action modeling, learning and recognition’. IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), 2014, 2014, pp. 26492656.
        . IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), 2014 , 2649 - 2656
    25. 25)
      • G. Johansson .
        25. Johansson, G.: ‘Visual perception of biological motion and a model for its analysis’, Percept. Psychophys., 1973, 14, (2), pp. 201211.
        . Percept. Psychophys. , 2 , 201 - 211
    26. 26)
      • H. Wang , A. Klser , C. Schmid .
        26. Wang, H., Klser, A., Schmid, C., et al: ‘Dense trajectories and motion boundary descriptors for action recognition’, Int. J. Comput. Vis., 2013, 103, (1), pp. 6079.
        . Int. J. Comput. Vis. , 1 , 60 - 79
    27. 27)
      • L. Breiman .
        27. Breiman, L.: ‘Random forests’, Mach. Learn., 2001, 45, (1), pp. 532.
        . Mach. Learn. , 1 , 5 - 32
    28. 28)
      • L. Breiman .
        28. Breiman, L.: ‘Bagging predictors’, Mach. Learn., 1996, 24, (2), pp. 123140.
        . Mach. Learn. , 2 , 123 - 140
    29. 29)
      • L. Breiman .
        29. Breiman, L.: ‘Out-of-bag estimation’. Tech. Rep., Citeseer, 1996.
        .
    30. 30)
      • M. Huang , G.R. Cai , H.B. Zhang .
        30. Huang, M., Cai, G.R., Zhang, H.B., et al: ‘Semantic and discriminative parts learning for 3d human action recognition’, Under Review, 2016.
        .
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cvi.2016.0252
Loading

Related content

content/journals/10.1049/iet-cvi.2016.0252
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address