http://iet.metastore.ingenta.com
1887

Webcam-based system for video-oculography

Webcam-based system for video-oculography

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Computer Vision — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Video-oculography (VOG) is a tool providing diagnostic information about the progress of the diseases that cause regression of the vergence eye movements, such as Parkinson's disease (PD). The majority of the existing systems are based on sophisticated infra-red (IR) devices. In this study, the authors show that a webcam-based VOG system can provide similar accuracy to that of a head-mounted IR-based VOG system. They also prove that the authors’ iris localisation algorithm outperforms current state-of-the-art methods on the popular BioID dataset in terms of accuracy. The proposed system consists of a set of image processing algorithms: face detection, facial features localisation and iris localisation. They have performed examinations on patients suffering from PD using their system and a JAZZ-novo head-mounted device with IR sensor as reference. In the experiments, they have obtained a mean correlation of 0.841 between the results from their method and those from the JAZZ-novo. They have shown that the accuracy of their visual system is similar to the accuracy of IR head-mounted devices. In the future, they plan to extend their experiments to inexpensive high frame rate cameras which can potentially provide more diagnostic parameters.

References

    1. 1)
      • Y.-F. Zhang , X.-Y. Gao , J.-Y. Zhu .
        1. Zhang, Y.-F., Gao, X.-Y., Zhu, J.-Y., et al: ‘A novel approach to driving fatigue detection using forehead eog’. Seventh Int. IEEE/EMBS Conf. on Neural Engineering (NER), 2015, 2015, pp. 707710.
        . Seventh Int. IEEE/EMBS Conf. on Neural Engineering (NER), 2015 , 707 - 710
    2. 2)
      • T. Inoue , Y. Kato , J. Ozawa .
        2. Inoue, T., Kato, Y., Ozawa, J.: ‘Evaluating visual fatigue by sensing eye movement during viewing of 3d images’. IEEE First Global Conf. on Consumer Electronics (GCCE), 2012, 2012, pp. 486490.
        . IEEE First Global Conf. on Consumer Electronics (GCCE), 2012 , 486 - 490
    3. 3)
      • E. Schneider , T. Dera , K. Bard .
        3. Schneider, E., Dera, T., Bard, K., et al: ‘Eye movement driven head-mounted camera: it looks where the eyes look’. IEEE Int. Conf. on Systems, Man and Cybernetics, 2005, 2005, vol. 3, pp. 24372442.
        . IEEE Int. Conf. on Systems, Man and Cybernetics, 2005 , 2437 - 2442
    4. 4)
      • T. Sakatani , T. Isa .
        4. Sakatani, T., Isa, T.: ‘Pc-based high-speed video-oculography for measuring rapid eye movements in mice’, Neurosci. Res., 2004, 49, (1), pp. 123131.
        . Neurosci. Res. , 1 , 123 - 131
    5. 5)
      • L. Sesma-Sanchez , A. Villanueva , R. Cabeza .
        5. Sesma-Sanchez, L., Villanueva, A., Cabeza, R.: ‘Gaze estimation interpolation methods based on binocular data’, IEEE Trans. Biomed. Eng., 2012, 59, (8), pp. 22352243.
        . IEEE Trans. Biomed. Eng. , 8 , 2235 - 2243
    6. 6)
      • J. van der Geest , M. Frens .
        6. van der Geest, J., Frens, M.: ‘Recording eye movements with video-oculography and sclera search coils: a direct comparison of two methods’, J. Neurosci. Methods, 2002, 114, (2), pp. 185195.
        . J. Neurosci. Methods , 2 , 185 - 195
    7. 7)
      • A.A. Migliaccio , H.G. MacDougall , L.B. Minor .
        7. Migliaccio, A.A., MacDougall, H.G., Minor, L.B., et al: ‘Inexpensive system for real-time 3-dimensional video-oculography using a fluorescent marker array’, J. Neurosci. Methods, 2005, 143, (2), pp. 141150.
        . J. Neurosci. Methods , 2 , 141 - 150
    8. 8)
      • T. Haslwanter , A.H. Clarke . (2010)
        8. Haslwanter, T., Clarke, A.H.: ‘Chapter 5 – eye movement measurement: electro-oculography and video-oculography’, in Zee, D.S., Eggers, S.D. (Eds.): ‘Vertigo and Imbalance: Clinical Neurophysiology of the Vestibular System, volume 9 of Handbook of Clinical Neurophysiology’ (Elsevier, 2010), pp. 6179.
        .
    9. 9)
      • T. Yagi , Y. Koizumi , M. Aoyagi .
        9. Yagi, T., Koizumi, Y., Aoyagi, M., et al: ‘Three-dimensional analysis of eye movements using four times high-speed video camera’, Auris Nasus Larynx, 2005, 32, (2), pp. 107112.
        . Auris Nasus Larynx , 2 , 107 - 112
    10. 10)
      • R. Wierts , M. Janssen , H. Kingma .
        10. Wierts, R., Janssen, M., Kingma, H.: ‘Measuring saccade peak velocity using a low-frequency sampling rate of 50 Hz’, IEEE Trans. Biomed. Eng., 2008, 55, (12), pp. 28402842.
        . IEEE Trans. Biomed. Eng. , 12 , 2840 - 2842
    11. 11)
      • B.S. Oommen , J.S. Stahl .
        11. Oommen, B.S., Stahl, J.S.: ‘Amplitudes of head movements during putative eye-only saccades’, Brain Res., 2005, 1065, (12), pp. 6878.
        . Brain Res. , 12 , 68 - 78
    12. 12)
      • Z. Zhou , P. Yao , Z. Zhuang .
        12. Zhou, Z., Yao, P., Zhuang, Z., et al: ‘A robust algorithm for iris localization based on radial symmetry and circular integro differential operator’. 2011 Sixth IEEE Conf. on Industrial Electronics and Applications, 2011, pp. 17421745.
        . 2011 Sixth IEEE Conf. on Industrial Electronics and Applications , 1742 - 1745
    13. 13)
      • N. Markus , M. Frljak , I.S. Pandzic .
        13. Markus, N., Frljak, M., Pandzic, I.S., et al: ‘Eye pupil localization with an ensemble of randomized trees’, Pattern Recognit., 2014, 47, pp. 578587.
        . Pattern Recognit. , 578 - 587
    14. 14)
      • A. George , A. Routray .
        14. George, A., Routray, A.: ‘Fast and accurate algorithm for eye localization for gaze tracking in low resolution images’, IET Comput. Vis., 2016, abs/1605.05272.
        . IET Comput. Vis.
    15. 15)
      • F. Timm , E. Barth . (2011)
        15. Timm, F., Barth, E.: ‘Accurate eye centre localisation by means of gradients’, in Mestetskiy, L., Braz, J. (Eds.): ‘VISAPP’ (SciTePress, 2011), pp. 125130.
        .
    16. 16)
      • R. Valenti , T. Gevers .
        16. Valenti, R., Gevers, T.: ‘Accurate eye center location through invariant isocentric patterns’, IEEE Trans. Pattern Anal. Mach. Intell., 2012, 34, (9), pp. 17851798.
        . IEEE Trans. Pattern Anal. Mach. Intell. , 9 , 1785 - 1798
    17. 17)
      • R. Lienhart , J. Maydt .
        17. Lienhart, R., Maydt, J.: ‘An extended set of Haar-like features for rapid object detection’. Proc. 2002 Int. Conf. on Image Processing, 2002, vol. 1, pp. I900–I–903.
        . Proc. 2002 Int. Conf. on Image Processing , I - 900–I–903
    18. 18)
      • N. Dalal , B. Triggs .
        18. Dalal, N., Triggs, B.: ‘Histograms of oriented gradients for human detection’. IEEE Computer Society Conf. on Computer Vision and Pattern Recognition, 2005. CVPR 2005, 2005, vol. 1, pp. 886893.
        . IEEE Computer Society Conf. on Computer Vision and Pattern Recognition, 2005. CVPR 2005 , 886 - 893
    19. 19)
      • J. Xiao , T. Moriyama , T. Kanade .
        19. Xiao, J., Moriyama, T., Kanade, T., et al: ‘Robust full-motion recovery of head by dynamic templates and re-registration techniques’, Int. J. Imaging Syst. Technol., 2003, 13, pp. 8594.
        . Int. J. Imaging Syst. Technol. , 85 - 94
    20. 20)
      • J. Naruniec , M. Kowalski , M. Daniluk .
        20. Naruniec, J., Kowalski, M., Daniluk, M.: ‘3d face data acquisition and modelling based on an rgbd camera matrix’. IEEE Eighth Int. Conf. on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS), 2015, 2015, vol. 1, pp. 157160.
        . IEEE Eighth Int. Conf. on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS), 2015 , 157 - 160
    21. 21)
      • S. Ren , X. Cao , Y. Wei .
        21. Ren, S., Cao, X., Wei, Y., et al: ‘Face alignment at 3000 fps via regressing local binary features’. IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), 2014, 2014, pp. 16851692.
        . IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), 2014 , 1685 - 1692
    22. 22)
      • O. Jesorsky , K.J. Kirchberg , R. Frischholz .
        22. Jesorsky, O., Kirchberg, K.J., Frischholz, R.: ‘Robust face detection using the Hausdorff distance’. Proc. of the Third Int. Conf. on Audio- and Video-Based Biometric Person Authentication, AVBPA ‘01, London, UK, 2001, pp. 9095, Available at: http://dl.acm.org/citation.cfm?id=646073.677460.
        . Proc. of the Third Int. Conf. on Audio- and Video-Based Biometric Person Authentication, AVBPA ‘01 , 90 - 95
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cvi.2016.0226
Loading

Related content

content/journals/10.1049/iet-cvi.2016.0226
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address