http://iet.metastore.ingenta.com
1887

Improved sparse representation method for image classification

Improved sparse representation method for image classification

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Computer Vision — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Among all image representation and classification methods, sparse representation has proven to be an extremely powerful tool. However, a limited number of training samples are an unavoidable problem for sparse representation methods. Many efforts have been devoted to improve the performance of sparse representation methods. In this study, the authors proposed a novel framework to improve the classification accuracy of sparse representation methods. They first introduced the concept of the approximations of all training samples (i.e., virtual training samples). The advantage of this is that the application of virtual training samples can allow noise in original training samples to be partially reduced. Then they proposed an efficient and competent objective function to disclose more discriminant information between different classes, which is very significant for obtaining a better classification result. The devised sparse representation method employs both the original and virtual training samples to improve the classification accuracy since the two kinds of training samples makes sample information to be fully exploited in a good way, also satisfactory robustness to be obtained. The experimental results on the JAFFE, ORL, Columbia Object Image Library (COIL-100) AR and CMU PIE databases show that the proposed method outperforms the state-of-art image classification methods.

References

    1. 1)
      • Y. Xu , B. Zhang , Z. Zhong .
        1. Xu, Y., Zhang, B., Zhong, Z.: ‘Multiple representations and sparse representation for image classification’, Pattern Recognit. Lett., 2015, 68, pp. 914.
        . Pattern Recognit. Lett. , 9 - 14
    2. 2)
      • D. Lu , Q. Weng .
        2. Lu, D., Weng, Q.: ‘A survey of image classification methods and techniques for improving classification performance’, Int. J. Remote Sens., 2007, 28, (5), pp. 823870.
        . Int. J. Remote Sens. , 5 , 823 - 870
    3. 3)
      • S. Paisitkriangkrai , C. Shen , J. Zhang .
        3. Paisitkriangkrai, S., Shen, C., Zhang, J.: ‘Performance evaluation of local features in human classification and detection’, IET Comput. Vis., 2008, 2, (28), pp. 236246.
        . IET Comput. Vis. , 28 , 236 - 246
    4. 4)
      • H. Xiong , T. Liu , D. Tao .
        4. Xiong, H., Liu, T., Tao, D., et al: ‘Dual diversified dynamical Gaussian process latent variable model for video repair’, IEEE Trans. Image Process., 2016, 25, (8), pp. 36263637.
        . IEEE Trans. Image Process. , 8 , 3626 - 3637
    5. 5)
      • T. Liu , D. Tao .
        5. Liu, T., Tao, D.: ‘On the performance of MahNMF Manhattan non-negative matrix factorization’, IEEE Trans. Neural Netw. Learn. Syst., 2016, 27, (9), pp. 18511863.
        . IEEE Trans. Neural Netw. Learn. Syst. , 9 , 1851 - 1863
    6. 6)
      • C. Duan , X. Meng , C. Tu .
        6. Duan, C., Meng, X., Tu, C., et al: ‘How to make local image features more efficient and distinctive’, IET Comput. Vis., 2008, 2, (3), pp. 178189.
        . IET Comput. Vis. , 3 , 178 - 189
    7. 7)
      • E. Walia , A. Suneja .
        7. Walia, E., Suneja, A.: ‘Fragile and blind watermarking technique based on Weber's law for medical image authentication’, IET Comput. Vis., 2013, 7, (1), pp. 919.
        . IET Comput. Vis. , 1 , 9 - 19
    8. 8)
      • L. Fei , Y. Xu , W. Tang .
        8. Fei, L., Xu, Y., Tang, W., et al: ‘Double-orientation code and nonlinear matching scheme for palmprint recognition’, Pattern Recognit., 2015, 49, (C), pp. 89101.
        . Pattern Recognit. , 89 - 101
    9. 9)
      • C. Xu , T. Liu , D. Tao .
        9. Xu, C., Liu, T., Tao, D., et al: ‘Local Rademacher complexity for multi-label learning’, IEEE Trans. Image Process., 2016, 25, (3), pp. 14951507.
        . IEEE Trans. Image Process. , 3 , 1495 - 1507
    10. 10)
      • Y. Luo , T. Liu , D. Tao .
        10. Luo, Y., Liu, T., Tao, D., et al: ‘Multiview matrix completion for multilabel image classification’, IEEE Trans. Image Process., 2015, 24, (8), pp. 22612274.
        . IEEE Trans. Image Process. , 8 , 2261 - 2274
    11. 11)
      • Y. Xu , L. Fei , D. Zhang .
        11. Xu, Y., Fei, L., Zhang, D.: ‘Combining left and right palmprint images for more accurate personal identification’, IEEE Trans. Image Process., 2015, 24, (2), pp. 549559.
        . IEEE Trans. Image Process. , 2 , 549 - 559
    12. 12)
      • Y. Luo , T. Liu , D. Tao .
        12. Luo, Y., Liu, T., Tao, D., et al: ‘Decomposition-based transfer distance metric learning for image classification’, IEEE Trans. Image Process., 2014, 23, (9), pp. 37893801.
        . IEEE Trans. Image Process. , 9 , 3789 - 3801
    13. 13)
      • M. Yang , L. Zhang , J. Yang .
        13. Yang, M., Zhang, L., Yang, J., et al: ‘Robust sparse coding for face recognition’. Proc. Int. Conf. on Computer Vision and Pattern Recognition, 2011, pp. 625632.
        . Proc. Int. Conf. on Computer Vision and Pattern Recognition , 625 - 632
    14. 14)
      • Z. Zhang , Y. Xu , J. Yang .
        14. Zhang, Z., Xu, Y., Yang, J., et al: ‘A survey of sparse representation: algorithms and applications’, Access IEEE, 2015, 3, pp. 490530.
        . Access IEEE , 490 - 530
    15. 15)
      • L. Fei , Y. Xu , B. Zhang .
        15. Fei, L., Xu, Y., Zhang, B., et al: ‘Low-rank representation integrated with principal line distance for contactless palmprint recognition’, Neurocomputing, 2016, 218, pp. 264275.
        . Neurocomputing , 264 - 275
    16. 16)
      • X. Mei , H. Ling .
        16. Mei, X., Ling, H.: ‘Robust visual tracking and vehicle classification via sparse representation’, IEEE Trans. Softw. Eng., 2011, 33, (11), pp. 22592272.
        . IEEE Trans. Softw. Eng. , 11 , 2259 - 2272
    17. 17)
      • J. Yang , J. Wright , T. Huang .
        17. Yang, J., Wright, J., Huang, T., et al: ‘Image super-resolution via sparse representation’, IEEE Trans. Image Process., 2010, 19, (11), pp. 28612873.
        . IEEE Trans. Image Process. , 11 , 2861 - 2873
    18. 18)
      • K. Kreutzdelgado , J. Murray , B. Rao .
        18. Kreutzdelgado, K., Murray, J., Rao, B., et al: ‘Dictionary learning algorithms for sparse representation’, Neural Comput., 2003, 15, (2), pp. 349396.
        . Neural Comput. , 2 , 349 - 396
    19. 19)
      • J. Mairal , M. Elad , G. Sapiro .
        19. Mairal, J., Elad, M., Sapiro, G.: ‘Sparse representation for color image restoration’, IEEE Trans. Image Process., 2008, 17, (1), pp. 5369.
        . IEEE Trans. Image Process. , 1 , 53 - 69
    20. 20)
      • T. Zhang , S. Liu , N. Ahuja .
        20. Zhang, T., Liu, S., Ahuja, N., et al: ‘Robust visual tracking via consistent low-rank sparse learning’, Int. J. Comput. Vis., 2014, 111, (2), pp. 171190.
        . Int. J. Comput. Vis. , 2 , 171 - 190
    21. 21)
      • J. Wright , Y. Ma , J. Mairal .
        21. Wright, J., Ma, Y., Mairal, J., et al: ‘Sparse representation for computer vision and pattern recognition’, Proc. IEEE, 2010, 98, (6), pp. 10311044.
        . Proc. IEEE , 6 , 1031 - 1044
    22. 22)
      • L. Zhang , M. Yang , X. Feng .
        22. Zhang, L., Yang, M., Feng, X.: ‘Sparse representation or collaborative representation: Which helps face recognition?’. Proc. Int. Conf. on Computer Vision, 2012, pp. 471478.
        . Proc. Int. Conf. on Computer Vision , 471 - 478
    23. 23)
      • I. Naseem , R. Togneri , M. Bennamoun .
        23. Naseem, I., Togneri, R., Bennamoun, M.: ‘Robust regression for face recognition’, Pattern Recognit., 2012, 45, (1), pp. 104118.
        . Pattern Recognit. , 1 , 104 - 118
    24. 24)
      • R. He , W. Zheng , B. Hu .
        24. He, R., Zheng, W., Hu, B.: ‘Maximum correntropy criterion for robust face recognition’, IEEE Trans. Pattern Anal. Mach. Intell., 2010, 33, (8), pp. 15611576.
        . IEEE Trans. Pattern Anal. Mach. Intell. , 8 , 1561 - 1576
    25. 25)
      • Y. Xu , X. Fang , J. Wu .
        25. Xu, Y., Fang, X., Wu, J., et al: ‘Discriminative transfer subspace learning via low-rank and sparse representation’, IEEE Trans. Image Process., 2015, 25, (2), pp. 11.
        . IEEE Trans. Image Process. , 2 , 1 - 1
    26. 26)
      • W. Deng , J. Hu , J. Guo .
        26. Deng, W., Hu, J., Guo, J.: ‘Extended SRC: undersampled face recognition via intraclass variant dictionary’, IEEE Trans. Pattern Anal. Mach. Intell., 2012, 34, (9), pp. 18641870.
        . IEEE Trans. Pattern Anal. Mach. Intell. , 9 , 1864 - 1870
    27. 27)
      • D. Wang , H. Lu , M. Yang .
        27. Wang, D., Lu, H., Yang, M.: ‘Kernel collaborative face recognition’, Pattern Recognit., 2015, 48, (10), pp. 30253037.
        . Pattern Recognit. , 10 , 3025 - 3037
    28. 28)
      • S. Wang , D. Zhang , L. Zhang .
        28. Wang, S., Zhang, D., Zhang, L., et al: ‘Relaxed collaborative representation for pattern classification’. Proc. Int. Conf. on Computer Vision and Pattern Recognition, 2012, pp. 22242231.
        . Proc. Int. Conf. on Computer Vision and Pattern Recognition , 2224 - 2231
    29. 29)
      • T. Zhang , B. Ghanem , S. Liu .
        29. Zhang, T., Ghanem, B., Liu, S., et al: ‘Low-rank sparse coding for image classification’. Proc. Int. Conf. on Computer Vision, 2013, pp. 281288.
        . Proc. Int. Conf. on Computer Vision , 281 - 288
    30. 30)
      • J. Yang , K. Yu , Y. Gong .
        30. Yang, J., Yu, K., Gong, Y., et al: ‘Linear spatial pyramid matching using sparse coding for image classification’. Proc. Int. Conf. on Computer Vision and Pattern Recognition, 2009, pp. 17941801.
        . Proc. Int. Conf. on Computer Vision and Pattern Recognition , 1794 - 1801
    31. 31)
      • L. Mancera , J. Portilla .
        31. Mancera, L., Portilla, J.: ‘L0-norm-based sparse representation through alternate projections’. Proc. Int. Conf. on Image Processing, 2006, pp. 20892092.
        . Proc. Int. Conf. on Image Processing , 2089 - 2092
    32. 32)
      • B. Wright , S. Member , A. Yang .
        32. Wright, B., Member, S., Yang, A., et al: ‘Robust face recognition via sparse representation’, J. Inner Mongolia Agricultural Univ., 2010, 31, (2), pp. 210227.
        . J. Inner Mongolia Agricultural Univ. , 2 , 210 - 227
    33. 33)
      • J. Yang , L. Zhang , Y. Xu .
        33. Yang, J., Zhang, L., Xu, Y., et al: ‘Beyond sparsity: the role of L1-optimizer in pattern classification’, Pattern Recognit., 2012, 45, (3), pp. 11041118.
        . Pattern Recognit. , 3 , 1104 - 1118
    34. 34)
      • D. Donoho .
        34. Donoho, D.: ‘For most large underdetermined systems of linear equations the minimal L1-norm solution is also the sparsest solution’, Commun. Pure Appl. Math., 2006, 59, (6), pp. 797829.
        . Commun. Pure Appl. Math. , 6 , 797 - 829
    35. 35)
      • E. Candès , J. Romberg , T. Tao .
        35. Candès, E., Romberg, J., Tao, T.: ‘Stable signal recovery from incomplete and inaccurate measurements’, Commun. Pure Appl. Math., 2005, 19, (5), pp. 410412.
        . Commun. Pure Appl. Math. , 5 , 410 - 412
    36. 36)
      • E. Candes , T. Tao .
        36. Candes, E., Tao, T.: ‘Near-optimal signal recovery from random projections: universal encoding strategies?’, IEEE Trans. Inf. Theory, 2007, 52, (12), pp. 54065425.
        . IEEE Trans. Inf. Theory , 12 , 5406 - 5425
    37. 37)
      • A. Yang , Z. Zhou , A. Balasubramanian .
        37. Yang, A., Zhou, Z., Balasubramanian, A., et al: ‘Fast l1-minimization algorithms for robust face recognition’, IEEE Trans. Image Process., 2010, 22, (8), pp. 32343246.
        . IEEE Trans. Image Process. , 8 , 3234 - 3246
    38. 38)
      • J. Yang , Y. Zhang .
        38. Yang, J., Zhang, Y.: ‘Alternating direction algorithms for l1-problems in compressive sensing’, SIAM J. Sci. Comput., 2009, 33, (1), pp. 250278.
        . SIAM J. Sci. Comput. , 1 , 250 - 278
    39. 39)
      • S. Chen , G. Chen , R. Gu .
        39. Chen, S., Chen, G., Gu, R.: ‘An efficient L2-norm regularized least-squares temporal difference learning algorithm’, Knowl.-Based Syst., 2013, 45, (3), pp. 9499.
        . Knowl.-Based Syst. , 3 , 94 - 99
    40. 40)
      • Z. Zhang , L. Wang , Q. Zhu .
        40. Zhang, Z., Wang, L., Zhu, Q., et al: ‘Noise modeling and representation based classification methods for face recognition’, Neurocomputing, 2015, 148, pp. 420429.
        . Neurocomputing , 420 - 429
    41. 41)
      • R. Rigamonti , M. Brown , V. Lepetit .
        41. Rigamonti, R., Brown, M., Lepetit, V.: ‘Are sparse representations really relevant for image classification?’. Proc. Int. Conf. on Computer Vision and Pattern Recognition, 2011, pp. 15451552.
        . Proc. Int. Conf. on Computer Vision and Pattern Recognition , 1545 - 1552
    42. 42)
      • Q. Shi , A. Eriksson , A. Hengel .
        42. Shi, Q., Eriksson, A., Hengel, A., et al: ‘Is face recognition really a Compressive Sensing problem?’. Proc. Int. Conf. on Computer Vision and Pattern Recognition, 2011, pp. 553560.
        . Proc. Int. Conf. on Computer Vision and Pattern Recognition , 553 - 560
    43. 43)
      • Y. Xu , D. Zhang , J. Yang .
        43. Xu, Y., Zhang, D., Yang, J., et al: ‘A two-phase test sample sparse representation method for use with face recognition’, IEEE Trans. Circuits Syst. Video Technol., 2011, 21, (9), pp. 12551262.
        . IEEE Trans. Circuits Syst. Video Technol. , 9 , 1255 - 1262
    44. 44)
      • Z. Liu , J. Pu , T. Huang .
        44. Liu, Z., Pu, J., Huang, T., et al: ‘A novel classification method for palmprint recognition based on reconstruction error and normalized distance’, Appl. Intell., 2013, 39, (2), pp. 307314.
        . Appl. Intell. , 2 , 307 - 314
    45. 45)
      • Y. Xu , Q. Zhu , Y. Chen .
        45. Xu, Y., Zhu, Q., Chen, Y., et al: ‘An improvement to the nearest neighbor classifier and face recognition experiments’, Int. J. Innov. Comput. Inf. Control, 2013, 9, (2), pp. 543554.
        . Int. J. Innov. Comput. Inf. Control , 2 , 543 - 554
    46. 46)
      • S. Kim .
        46. Kim, S.: ‘On using a dissimilarity representation method to solve the small sample size problem for face recognition’. Proc. Int. Conf. on Advanced Concepts for Intelligent Vision Systems, 2006, pp. 11741185.
        . Proc. Int. Conf. on Advanced Concepts for Intelligent Vision Systems , 1174 - 1185
    47. 47)
      • Y. Xu , X. Fang , X. Li .
        47. Xu, Y., Fang, X., Li, X., et al: ‘Data uncertainty in face recognition’, IEEE Trans. Cybern., 2014, 44, (10), pp. 9501961.
        . IEEE Trans. Cybern. , 10 , 950 - 1961
    48. 48)
      • N. Thian , S. Marcel , S. Bengio .
        48. Thian, N., Marcel, S., Bengio, S.: ‘Improving face authentication using virtual samples’. Proc. Int. Conf. on Acoustics, 2003, pp. III-233236.
        . Proc. Int. Conf. on Acoustics , III - 233
    49. 49)
      • Y. Xu , X. Zhu , Z. Li .
        49. Xu, Y., Zhu, X., Li, Z., et al: ‘Using the original and ‘symmetrical face’ training samples to perform representation based two-step face recognition’, Pattern Recognit., 2013, 46, (4), pp. 11511158.
        . Pattern Recognit. , 4 , 1151 - 1158
    50. 50)
      • Y.-S. Ryu , S.-Y. Oh .
        50. Ryu, Y.-S., Oh, S.-Y.: ‘Simple hybrid classifier for face recognition with adaptively generated virtual data’, Pattern Recognit. Lett., 2002, 23, (7), pp. 833841.
        . Pattern Recognit. Lett. , 7 , 833 - 841
    51. 51)
      • Y. Xu , Z. Zhang , G. Lu .
        51. Xu, Y., Zhang, Z., Lu, G., et al: ‘Approximately symmetrical face images for image preprocessing in face recognition and sparse representation based classification’, Pattern Recognit., 2016, 54, pp. 6882.
        . Pattern Recognit. , 68 - 82
    52. 52)
      • W. Wang , J. Yang .
        52. Wang, W., Yang, J.: ‘Quadratic discriminant analysis method based on virtual training samples’, Acta Autom. Sin., 2008, 34, (34), pp. 400407.
        . Acta Autom. Sin. , 34 , 400 - 407
    53. 53)
      • Y. Xu , X. Li , J. Yang .
        53. Xu, Y., Li, X., Yang, J., et al: ‘Integrating conventional and inverse representation for face recognition’, IEEE Trans. Cybern., 2014, 44, (10), pp. 17381746.
        . IEEE Trans. Cybern. , 10 , 1738 - 1746
    54. 54)
      • T. Poggio , T. Vetter . (1992)
        54. Poggio, T., Vetter, T.: ‘Recognition and structure from one 2D model view: Observations on prototypes, object classes and symmetries’ (Massachusetts Inst of Technology Cambridge Artificial Intelligence Lab, 1992), p. 1347.
        .
    55. 55)
      • S. Kim , K. Koh , M. Lustig .
        55. Kim, S., Koh, K., Lustig, M., et al: ‘An interior-point method for large-scale l 1 -regularized least squares’, IEEE J. Sel. Top. Signal Process., 2007, 1, (4), pp. 606617.
        . IEEE J. Sel. Top. Signal Process. , 4 , 606 - 617
    56. 56)
      • S. Boyd , L. Vandenberghe . (2004)
        56. Boyd, S., Vandenberghe, L.: ‘Convex functions’, in Boyd, S. (Ed.): ‘Convex optimization’ (Cambridge University Press, 2004, 3rd edn.), pp. 6771.
        .
    57. 57)
      • F. Samaria , A. Harter .
        57. Samaria, F., Harter, A.: ‘Parameterisation of a stochastic model for human face identification’. Proc. Int. Conf. the Second IEEE Workshop on Applications of Computer Vision, 1995, pp. 138142.
        . Proc. Int. Conf. the Second IEEE Workshop on Applications of Computer Vision , 138 - 142
    58. 58)
      • 58. ‘The JAFFE database’, http://www.kasrl.org/jaffe.html, accessed 6 December 2016.
        .
    59. 59)
      • 59. ‘The COIL-100 database’, http://www.cs.columbia.edu/CAVE/software/softlib/coil-100.php, accessed 6 December 2016.
        .
    60. 60)
      • 60. ‘The AR database’, http://www2.ece.ohio-state.edu/~aleix/ARdatabase.htmlS, accessed 6 December 2016.
        .
    61. 61)
      • R. Gross , I. Matthews , J. Cohn .
        61. Gross, R., Matthews, I., Cohn, J., et al: ‘Multi-PIE’, Image Vis. Comput., 2010, 28, (5), pp. 807813.
        . Image Vis. Comput. , 5 , 807 - 813
    62. 62)
      • A. Beck , M. Teboulle .
        62. Beck, A., Teboulle, M.: ‘A fast iterative shrinkage-thresholding algorithm for linear inverse problems’, Siam J. Imaging Sci., 2009, 2, (1), pp. 183202.
        . Siam J. Imaging Sci. , 1 , 183 - 202
    63. 63)
      • Y. Xu , X. Li , J. Yang .
        63. Xu, Y., Li, X., Yang, J., et al: ‘Integrate the original face image and its mirror image for face recognition’, Neurocomputing, 2014, 131, (7), pp. 191199.
        . Neurocomputing , 7 , 191 - 199
    64. 64)
      • V. Shia , A. Yang , S. Sastry .
        64. Shia, V., Yang, A., Sastry, S., et al: ‘Fast L1-minimization and parallelization for face recognition’. Proc. Int. Conf. 2011 Conf. Record of the Forty Fifth Asilomar Conf. on Signals, Systems and, 2011, pp. 11991203.
        . Proc. Int. Conf. 2011 Conf. Record of the Forty Fifth Asilomar Conf. on Signals, Systems and , 1199 - 1203
    65. 65)
      • I. Naseem , R. Togneri , M. Bennamoun .
        65. Naseem, I., Togneri, R., Bennamoun, M.: ‘Linear regression for face recognition’, IEEE Trans. Pattern Anal. Mach. Intell., 2010, 32, (11), pp. 21062112.
        . IEEE Trans. Pattern Anal. Mach. Intell. , 11 , 2106 - 2112
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cvi.2016.0186
Loading

Related content

content/journals/10.1049/iet-cvi.2016.0186
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address