Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Improved sparse representation method for image classification

Among all image representation and classification methods, sparse representation has proven to be an extremely powerful tool. However, a limited number of training samples are an unavoidable problem for sparse representation methods. Many efforts have been devoted to improve the performance of sparse representation methods. In this study, the authors proposed a novel framework to improve the classification accuracy of sparse representation methods. They first introduced the concept of the approximations of all training samples (i.e., virtual training samples). The advantage of this is that the application of virtual training samples can allow noise in original training samples to be partially reduced. Then they proposed an efficient and competent objective function to disclose more discriminant information between different classes, which is very significant for obtaining a better classification result. The devised sparse representation method employs both the original and virtual training samples to improve the classification accuracy since the two kinds of training samples makes sample information to be fully exploited in a good way, also satisfactory robustness to be obtained. The experimental results on the JAFFE, ORL, Columbia Object Image Library (COIL-100) AR and CMU PIE databases show that the proposed method outperforms the state-of-art image classification methods.

References

    1. 1)
      • 35. Candès, E., Romberg, J., Tao, T.: ‘Stable signal recovery from incomplete and inaccurate measurements’, Commun. Pure Appl. Math., 2005, 19, (5), pp. 410412.
    2. 2)
      • 38. Yang, J., Zhang, Y.: ‘Alternating direction algorithms for l1-problems in compressive sensing’, SIAM J. Sci. Comput., 2009, 33, (1), pp. 250278.
    3. 3)
      • 19. Mairal, J., Elad, M., Sapiro, G.: ‘Sparse representation for color image restoration’, IEEE Trans. Image Process., 2008, 17, (1), pp. 5369.
    4. 4)
      • 20. Zhang, T., Liu, S., Ahuja, N., et al: ‘Robust visual tracking via consistent low-rank sparse learning’, Int. J. Comput. Vis., 2014, 111, (2), pp. 171190.
    5. 5)
      • 22. Zhang, L., Yang, M., Feng, X.: ‘Sparse representation or collaborative representation: Which helps face recognition?’. Proc. Int. Conf. on Computer Vision, 2012, pp. 471478.
    6. 6)
      • 44. Liu, Z., Pu, J., Huang, T., et al: ‘A novel classification method for palmprint recognition based on reconstruction error and normalized distance’, Appl. Intell., 2013, 39, (2), pp. 307314.
    7. 7)
      • 40. Zhang, Z., Wang, L., Zhu, Q., et al: ‘Noise modeling and representation based classification methods for face recognition’, Neurocomputing, 2015, 148, pp. 420429.
    8. 8)
      • 2. Lu, D., Weng, Q.: ‘A survey of image classification methods and techniques for improving classification performance’, Int. J. Remote Sens., 2007, 28, (5), pp. 823870.
    9. 9)
      • 10. Luo, Y., Liu, T., Tao, D., et al: ‘Multiview matrix completion for multilabel image classification’, IEEE Trans. Image Process., 2015, 24, (8), pp. 22612274.
    10. 10)
      • 51. Xu, Y., Zhang, Z., Lu, G., et al: ‘Approximately symmetrical face images for image preprocessing in face recognition and sparse representation based classification’, Pattern Recognit., 2016, 54, pp. 6882.
    11. 11)
      • 57. Samaria, F., Harter, A.: ‘Parameterisation of a stochastic model for human face identification’. Proc. Int. Conf. the Second IEEE Workshop on Applications of Computer Vision, 1995, pp. 138142.
    12. 12)
      • 43. Xu, Y., Zhang, D., Yang, J., et al: ‘A two-phase test sample sparse representation method for use with face recognition’, IEEE Trans. Circuits Syst. Video Technol., 2011, 21, (9), pp. 12551262.
    13. 13)
      • 34. Donoho, D.: ‘For most large underdetermined systems of linear equations the minimal L1-norm solution is also the sparsest solution’, Commun. Pure Appl. Math., 2006, 59, (6), pp. 797829.
    14. 14)
      • 59. ‘The COIL-100 database’, http://www.cs.columbia.edu/CAVE/software/softlib/coil-100.php, accessed 6 December 2016.
    15. 15)
      • 17. Yang, J., Wright, J., Huang, T., et al: ‘Image super-resolution via sparse representation’, IEEE Trans. Image Process., 2010, 19, (11), pp. 28612873.
    16. 16)
      • 61. Gross, R., Matthews, I., Cohn, J., et al: ‘Multi-PIE’, Image Vis. Comput., 2010, 28, (5), pp. 807813.
    17. 17)
      • 15. Fei, L., Xu, Y., Zhang, B., et al: ‘Low-rank representation integrated with principal line distance for contactless palmprint recognition’, Neurocomputing, 2016, 218, pp. 264275.
    18. 18)
      • 62. Beck, A., Teboulle, M.: ‘A fast iterative shrinkage-thresholding algorithm for linear inverse problems’, Siam J. Imaging Sci., 2009, 2, (1), pp. 183202.
    19. 19)
      • 23. Naseem, I., Togneri, R., Bennamoun, M.: ‘Robust regression for face recognition’, Pattern Recognit., 2012, 45, (1), pp. 104118.
    20. 20)
      • 39. Chen, S., Chen, G., Gu, R.: ‘An efficient L2-norm regularized least-squares temporal difference learning algorithm’, Knowl.-Based Syst., 2013, 45, (3), pp. 9499.
    21. 21)
      • 14. Zhang, Z., Xu, Y., Yang, J., et al: ‘A survey of sparse representation: algorithms and applications’, Access IEEE, 2015, 3, pp. 490530.
    22. 22)
      • 42. Shi, Q., Eriksson, A., Hengel, A., et al: ‘Is face recognition really a Compressive Sensing problem?’. Proc. Int. Conf. on Computer Vision and Pattern Recognition, 2011, pp. 553560.
    23. 23)
      • 48. Thian, N., Marcel, S., Bengio, S.: ‘Improving face authentication using virtual samples’. Proc. Int. Conf. on Acoustics, 2003, pp. III-233236.
    24. 24)
      • 28. Wang, S., Zhang, D., Zhang, L., et al: ‘Relaxed collaborative representation for pattern classification’. Proc. Int. Conf. on Computer Vision and Pattern Recognition, 2012, pp. 22242231.
    25. 25)
      • 64. Shia, V., Yang, A., Sastry, S., et al: ‘Fast L1-minimization and parallelization for face recognition’. Proc. Int. Conf. 2011 Conf. Record of the Forty Fifth Asilomar Conf. on Signals, Systems and, 2011, pp. 11991203.
    26. 26)
      • 27. Wang, D., Lu, H., Yang, M.: ‘Kernel collaborative face recognition’, Pattern Recognit., 2015, 48, (10), pp. 30253037.
    27. 27)
      • 7. Walia, E., Suneja, A.: ‘Fragile and blind watermarking technique based on Weber's law for medical image authentication’, IET Comput. Vis., 2013, 7, (1), pp. 919.
    28. 28)
      • 41. Rigamonti, R., Brown, M., Lepetit, V.: ‘Are sparse representations really relevant for image classification?’. Proc. Int. Conf. on Computer Vision and Pattern Recognition, 2011, pp. 15451552.
    29. 29)
      • 32. Wright, B., Member, S., Yang, A., et al: ‘Robust face recognition via sparse representation’, J. Inner Mongolia Agricultural Univ., 2010, 31, (2), pp. 210227.
    30. 30)
      • 36. Candes, E., Tao, T.: ‘Near-optimal signal recovery from random projections: universal encoding strategies?’, IEEE Trans. Inf. Theory, 2007, 52, (12), pp. 54065425.
    31. 31)
      • 55. Kim, S., Koh, K., Lustig, M., et al: ‘An interior-point method for large-scale l 1 -regularized least squares’, IEEE J. Sel. Top. Signal Process., 2007, 1, (4), pp. 606617.
    32. 32)
      • 12. Luo, Y., Liu, T., Tao, D., et al: ‘Decomposition-based transfer distance metric learning for image classification’, IEEE Trans. Image Process., 2014, 23, (9), pp. 37893801.
    33. 33)
      • 56. Boyd, S., Vandenberghe, L.: ‘Convex functions’, in Boyd, S. (Ed.): ‘Convex optimization’ (Cambridge University Press, 2004, 3rd edn.), pp. 6771.
    34. 34)
      • 5. Liu, T., Tao, D.: ‘On the performance of MahNMF Manhattan non-negative matrix factorization’, IEEE Trans. Neural Netw. Learn. Syst., 2016, 27, (9), pp. 18511863.
    35. 35)
      • 52. Wang, W., Yang, J.: ‘Quadratic discriminant analysis method based on virtual training samples’, Acta Autom. Sin., 2008, 34, (34), pp. 400407.
    36. 36)
      • 46. Kim, S.: ‘On using a dissimilarity representation method to solve the small sample size problem for face recognition’. Proc. Int. Conf. on Advanced Concepts for Intelligent Vision Systems, 2006, pp. 11741185.
    37. 37)
      • 29. Zhang, T., Ghanem, B., Liu, S., et al: ‘Low-rank sparse coding for image classification’. Proc. Int. Conf. on Computer Vision, 2013, pp. 281288.
    38. 38)
      • 37. Yang, A., Zhou, Z., Balasubramanian, A., et al: ‘Fast l1-minimization algorithms for robust face recognition’, IEEE Trans. Image Process., 2010, 22, (8), pp. 32343246.
    39. 39)
      • 50. Ryu, Y.-S., Oh, S.-Y.: ‘Simple hybrid classifier for face recognition with adaptively generated virtual data’, Pattern Recognit. Lett., 2002, 23, (7), pp. 833841.
    40. 40)
      • 65. Naseem, I., Togneri, R., Bennamoun, M.: ‘Linear regression for face recognition’, IEEE Trans. Pattern Anal. Mach. Intell., 2010, 32, (11), pp. 21062112.
    41. 41)
      • 8. Fei, L., Xu, Y., Tang, W., et al: ‘Double-orientation code and nonlinear matching scheme for palmprint recognition’, Pattern Recognit., 2015, 49, (C), pp. 89101.
    42. 42)
      • 25. Xu, Y., Fang, X., Wu, J., et al: ‘Discriminative transfer subspace learning via low-rank and sparse representation’, IEEE Trans. Image Process., 2015, 25, (2), pp. 11.
    43. 43)
      • 53. Xu, Y., Li, X., Yang, J., et al: ‘Integrating conventional and inverse representation for face recognition’, IEEE Trans. Cybern., 2014, 44, (10), pp. 17381746.
    44. 44)
      • 31. Mancera, L., Portilla, J.: ‘L0-norm-based sparse representation through alternate projections’. Proc. Int. Conf. on Image Processing, 2006, pp. 20892092.
    45. 45)
      • 30. Yang, J., Yu, K., Gong, Y., et al: ‘Linear spatial pyramid matching using sparse coding for image classification’. Proc. Int. Conf. on Computer Vision and Pattern Recognition, 2009, pp. 17941801.
    46. 46)
      • 47. Xu, Y., Fang, X., Li, X., et al: ‘Data uncertainty in face recognition’, IEEE Trans. Cybern., 2014, 44, (10), pp. 9501961.
    47. 47)
      • 21. Wright, J., Ma, Y., Mairal, J., et al: ‘Sparse representation for computer vision and pattern recognition’, Proc. IEEE, 2010, 98, (6), pp. 10311044.
    48. 48)
      • 9. Xu, C., Liu, T., Tao, D., et al: ‘Local Rademacher complexity for multi-label learning’, IEEE Trans. Image Process., 2016, 25, (3), pp. 14951507.
    49. 49)
      • 49. Xu, Y., Zhu, X., Li, Z., et al: ‘Using the original and ‘symmetrical face’ training samples to perform representation based two-step face recognition’, Pattern Recognit., 2013, 46, (4), pp. 11511158.
    50. 50)
      • 1. Xu, Y., Zhang, B., Zhong, Z.: ‘Multiple representations and sparse representation for image classification’, Pattern Recognit. Lett., 2015, 68, pp. 914.
    51. 51)
      • 26. Deng, W., Hu, J., Guo, J.: ‘Extended SRC: undersampled face recognition via intraclass variant dictionary’, IEEE Trans. Pattern Anal. Mach. Intell., 2012, 34, (9), pp. 18641870.
    52. 52)
      • 16. Mei, X., Ling, H.: ‘Robust visual tracking and vehicle classification via sparse representation’, IEEE Trans. Softw. Eng., 2011, 33, (11), pp. 22592272.
    53. 53)
      • 60. ‘The AR database’, http://www2.ece.ohio-state.edu/~aleix/ARdatabase.htmlS, accessed 6 December 2016.
    54. 54)
      • 4. Xiong, H., Liu, T., Tao, D., et al: ‘Dual diversified dynamical Gaussian process latent variable model for video repair’, IEEE Trans. Image Process., 2016, 25, (8), pp. 36263637.
    55. 55)
      • 13. Yang, M., Zhang, L., Yang, J., et al: ‘Robust sparse coding for face recognition’. Proc. Int. Conf. on Computer Vision and Pattern Recognition, 2011, pp. 625632.
    56. 56)
      • 11. Xu, Y., Fei, L., Zhang, D.: ‘Combining left and right palmprint images for more accurate personal identification’, IEEE Trans. Image Process., 2015, 24, (2), pp. 549559.
    57. 57)
      • 24. He, R., Zheng, W., Hu, B.: ‘Maximum correntropy criterion for robust face recognition’, IEEE Trans. Pattern Anal. Mach. Intell., 2010, 33, (8), pp. 15611576.
    58. 58)
      • 63. Xu, Y., Li, X., Yang, J., et al: ‘Integrate the original face image and its mirror image for face recognition’, Neurocomputing, 2014, 131, (7), pp. 191199.
    59. 59)
      • 54. Poggio, T., Vetter, T.: ‘Recognition and structure from one 2D model view: Observations on prototypes, object classes and symmetries’ (Massachusetts Inst of Technology Cambridge Artificial Intelligence Lab, 1992), p. 1347.
    60. 60)
      • 6. Duan, C., Meng, X., Tu, C., et al: ‘How to make local image features more efficient and distinctive’, IET Comput. Vis., 2008, 2, (3), pp. 178189.
    61. 61)
      • 58. ‘The JAFFE database’, http://www.kasrl.org/jaffe.html, accessed 6 December 2016.
    62. 62)
      • 45. Xu, Y., Zhu, Q., Chen, Y., et al: ‘An improvement to the nearest neighbor classifier and face recognition experiments’, Int. J. Innov. Comput. Inf. Control, 2013, 9, (2), pp. 543554.
    63. 63)
      • 33. Yang, J., Zhang, L., Xu, Y., et al: ‘Beyond sparsity: the role of L1-optimizer in pattern classification’, Pattern Recognit., 2012, 45, (3), pp. 11041118.
    64. 64)
      • 3. Paisitkriangkrai, S., Shen, C., Zhang, J.: ‘Performance evaluation of local features in human classification and detection’, IET Comput. Vis., 2008, 2, (28), pp. 236246.
    65. 65)
      • 18. Kreutzdelgado, K., Murray, J., Rao, B., et al: ‘Dictionary learning algorithms for sparse representation’, Neural Comput., 2003, 15, (2), pp. 349396.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cvi.2016.0186
Loading

Related content

content/journals/10.1049/iet-cvi.2016.0186
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address