http://iet.metastore.ingenta.com
1887

access icon openaccess Multiple human tracking in RGB-depth data: a survey

  • XML
    288.4384765625Kb
  • HTML
    260.1455078125Kb
  • PDF
    4.016868591308594MB
Loading full text...

Full text loading...

/deliver/fulltext/iet-cvi/11/4/IET-CVI.2016.0178.html;jsessionid=s44vgygowrj9.x-iet-live-01?itemId=%2fcontent%2fjournals%2f10.1049%2fiet-cvi.2016.0178&mimeType=html&fmt=ahah

References

    1. 1)
      • X. Wang .
        1. Wang, X.: ‘Intelligent multi-camera video surveillance: a review’, Pattern Recognit. Lett., 2013, 34, (1), pp. 319.
        . Pattern Recognit. Lett. , 1 , 3 - 19
    2. 2)
      • X. Zabulis , D. Grammenos , T. Sarmis .
        2. Zabulis, X., Grammenos, D., Sarmis, T., et al: ‘Multicamera human detection and tracking supporting natural interaction with large-scale displays’, Mach. Vis. Appl., 2013, 24, (2), pp. 319336.
        . Mach. Vis. Appl. , 2 , 319 - 336
    3. 3)
      • F. Cardinaux , D. Bhowmik , C. Abhayaratne .
        3. Cardinaux, F., Bhowmik, D., Abhayaratne, C., et al: ‘Video based technology for ambient assisted living: a review of the literature’, J. Ambient Intell. Smart Environ., 2011, 3, (3), pp. 253269.
        . J. Ambient Intell. Smart Environ. , 3 , 253 - 269
    4. 4)
      • A.A. Chaaraoui , P. Climent-Prez , F. Flrez-Revuelta .
        4. Chaaraoui, A.A., Climent-Prez, P., Flrez-Revuelta, F.: ‘A review on vision techniques applied to human behaviour analysis for ambient-assisted living’, Expert Syst. Appl., 2012, 39, (12), pp. 1087310888.
        . Expert Syst. Appl. , 12 , 10873 - 10888
    5. 5)
      • D. Geronimo , A. Lopez , A. Sappa .
        5. Geronimo, D., Lopez, A., Sappa, A., et al: ‘Survey of pedestrian detection for advanced driver assistance systems’, IEEE Trans. Pattern Anal. Mach. Intell., 2010, 32, (7), pp. 12391258.
        . IEEE Trans. Pattern Anal. Mach. Intell. , 7 , 1239 - 1258
    6. 6)
      • W.-L. Lu , J.-A. Ting , J. Little .
        6. Lu, W.-L., Ting, J.-A., Little, J., et al: ‘Learning to track and identify players from broadcast sports videos’, IEEE Trans. Pattern Anal. Mach. Intell., 2013, 35, (7), pp. 17041716.
        . IEEE Trans. Pattern Anal. Mach. Intell. , 7 , 1704 - 1716
    7. 7)
      • 7. Microsoft Corporporation. Kinect for Xbox 360, 2009.
        .
    8. 8)
      • 8. Asustek Computer Inc. Xtion PRO LIVE, 2009.
        .
    9. 9)
      • J. Han , L. Shao , D. Xu .
        9. Han, J., Shao, L., Xu, D., et al: ‘Enhanced computer vision with Microsoft Kinect sensor: a review’, IEEE Trans. Cybern., 2013, 43, (5), pp. 13181334.
        . IEEE Trans. Cybern. , 5 , 1318 - 1334
    10. 10)
      • P. Dollar , C. Wojek , B. Schiele .
        10. Dollar, P., Wojek, C., Schiele, B., et al: ‘Pedestrian detection: an evaluation of the state of the art’, IEEE Trans. Pattern Anal. Mach. Intell., 2012, 34, (4), pp. 743761.
        . IEEE Trans. Pattern Anal. Mach. Intell. , 4 , 743 - 761
    11. 11)
      • W. Luo , X. Zhao , T. Kim .
        11. Luo, W., Zhao, X., Kim, T.: ‘Multiple object tracking: a review’, CoRR abs/1409.7618, 2014, Pre-Print Version. URL http://arxiv.org/abs/1409.7618.
        .
    12. 12)
      • L. Chen , H. Wei , J. Ferryman .
        12. Chen, L., Wei, H., Ferryman, J.: ‘A survey of human motion analysis using depth imagery’, Pattern Recognit. Lett., 2013, 34, (15), pp. 19952006.
        . Pattern Recognit. Lett. , 15 , 1995 - 2006
    13. 13)
      • J. Zhang , W. Li , P.O. Ogunbona .
        13. Zhang, J., Li, W., Ogunbona, P.O., et al: ‘RGB-D-based action recognition datasets: a survey’, Pattern Recogn., 2016, 60, pp. 86105.
        . Pattern Recogn. , 86 - 105
    14. 14)
      • J. Suarez , R. Murphy .
        14. Suarez, J., Murphy, R.: ‘Hand gesture recognition with depth images: a review’. RO-MAN, 2012, 2012, pp. 411417.
        . RO-MAN, 2012 , 411 - 417
    15. 15)
      • F. Endres , J. Hess , J. Sturm .
        15. Endres, F., Hess, J., Sturm, J., et al: ‘3-D mapping with an RGB-D camera’, IEEE Trans. Robot., 2014, 30, (1), pp. 177187.
        . IEEE Trans. Robot. , 1 , 177 - 187
    16. 16)
      • M. Enzweiler , D. Gavrila .
        16. Enzweiler, M., Gavrila, D.: ‘Monocular pedestrian detection: survey and experiments’, IEEE Trans. Pattern Anal. Mach. Intell., 2009, 31, (12), pp. 21792195.
        . IEEE Trans. Pattern Anal. Mach. Intell. , 12 , 2179 - 2195
    17. 17)
      • T. Li , H. Chang , M. Wang .
        17. Li, T., Chang, H., Wang, M., et al: ‘Crowded scene analysis: a survey’, IEEE Trans. Circuits Syst. Video Technol., 2015, 25, (3), pp. 367386.
        . IEEE Trans. Circuits Syst. Video Technol. , 3 , 367 - 386
    18. 18)
      • M. Paul , S.M.E. Haque , S. Chakraborty .
        18. Paul, M., Haque, S.M.E., Chakraborty, S.: ‘Human detection in surveillance videos and its applications – a review’, EURASIP J. Adv. Signal Process., 2013, 2013, (1), pp. 176.
        . EURASIP J. Adv. Signal Process. , 1 , 176
    19. 19)
      • H. Zhou , H. Hu .
        19. Zhou, H., Hu, H.: ‘Human motion tracking for rehabilitation: a survey’, Biomed. Signal Proc. Control, 2008, 3, (1), pp. 118.
        . Biomed. Signal Proc. Control , 1 , 1 - 18
    20. 20)
      • G.M. Garća , D.A. Klein , J. Stückler .
        20. Garća, G.M., Klein, D.A., Stückler, J., et al: ‘Adaptive multi-cue 3D tracking of arbitrary objects’, Pattern Recognit., 2012, 7476, pp. 357366.
        . Pattern Recognit. , 357 - 366
    21. 21)
      • S. Song , J. Xiao .
        21. Song, S., Xiao, J.: ‘Tracking revisited using RGBD camera: unified benchmark and baselines’. IEEE Conf. on Computer Vision, 2013, pp. 233240.
        . IEEE Conf. on Computer Vision , 233 - 240
    22. 22)
      • Q. Wang , J. Fang , Y. Yuan .
        22. Wang, Q., Fang, J., Yuan, Y.: ‘Multi-cue based tracking’, Neurocomputing, 2014, 131, pp. 227236.
        . Neurocomputing , 227 - 236
    23. 23)
      • B. Zhong , Y. Shen , Y. Chen .
        23. Zhong, B., Shen, Y., Chen, Y., et al: ‘Online learning 3D context for robust visual tracking’, Neurocomputing, 2015, 151, Part 2, pp. 710718.
        . Neurocomputing , 710 - 718
    24. 24)
      • S. Walk , K. Schindler , B. Schiele .
        24. Walk, S., Schindler, K., Schiele, B.: ‘Disparity statistics for pedestrian detection: combining appearance, motion and stereo’. European Conf. on Computer Vision, 2010, pp. 182195.
        . European Conf. on Computer Vision , 182 - 195
    25. 25)
      • L. Spinello , K. O. Arras .
        25. Spinello, L., Arras, K. O.: ‘People detection in RGB-D data’. 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems, San Francisco, CA, 2011, pp. 38383843.
        . 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems , 3838 - 3843
    26. 26)
      • C. Wang , H. Liu , L. Ma .
        26. Wang, C., Liu, H., Ma, L.: ‘Depth Motion Detection–A Novel RS-Trigger Temporal Logic based Method’, IEEE Signal Process. Lett., 2014, 21, (6), pp. 717721.
        . IEEE Signal Process. Lett. , 6 , 717 - 721
    27. 27)
      • L. Xia , C.-C. Chen , J. Aggarwal .
        27. Xia, L., Chen, C.-C., Aggarwal, J.: ‘Human detection using depth information by Kinect’. Computer Vision and Pattern Recognition Workshops, 2011, pp. 1522.
        . Computer Vision and Pattern Recognition Workshops , 15 - 22
    28. 28)
      • C. Stahlschmidt , A. Gavriilidis , J. Velten .
        28. Stahlschmidt, C., Gavriilidis, A., Velten, J., et al: ‘Applications for a people detection and tracking algorithm using a time-of-flight camera’, Multimedia Tools Appl., 2016, 75, (17), pp. 1076910786.
        . Multimedia Tools Appl. , 17 , 10769 - 10786
    29. 29)
      • T. Bagautdinov , F. Fleuret , P. Fua .
        29. Bagautdinov, T., Fleuret, F., Fua, P.: ‘Probability occupancy maps for occluded depth images’. IEEE Conf. on Computer Vision and Pattern Recognition, 2015, pp. 28292837.
        . IEEE Conf. on Computer Vision and Pattern Recognition , 2829 - 2837
    30. 30)
      • B. Fosty , C.F. Crispim-Junior , J. Badie .
        30. Fosty, B., Crispim-Junior, C.F., Badie, J., et al: ‘Event recognition system for older people monitoring using an RGB-D camera’. Workshop on Assistance and Service Robotics in a Human Environment, 2013.
        . Workshop on Assistance and Service Robotics in a Human Environment
    31. 31)
      • P. Dondi , L. Lombardi , L. Cinque .
        31. Dondi, P., Lombardi, L., Cinque, L.: ‘Multisubjects tracking by time-of-flight camera’. Conf. on Image Analysis and Processing, 2013, vol. 8156, pp. 692701.
        . Conf. on Image Analysis and Processing , 692 - 701
    32. 32)
      • K. Yun , J. Honorio , D. Chattopadhyay .
        32. Yun, K., Honorio, J., Chattopadhyay, D., et al: ‘Two-person interaction detection using body-pose features and multiple instance learning’. IEEE Conf. on Computer Vision and Pattern Recognition Workshops, 2012, pp. 2835.
        . IEEE Conf. on Computer Vision and Pattern Recognition Workshops , 28 - 35
    33. 33)
      • N. Xu , A. Liu , W. Nie .
        33. Xu, N., Liu, A., Nie, W., et al: ‘Multi-modal & multi-view & interactive benchmark dataset for human action recognition’. ACM Conf. on Multimedia, 2015, pp. 11951198.
        . ACM Conf. on Multimedia , 1195 - 1198
    34. 34)
      • A. Shahroudy , J. Liu , T.-T. Ng .
        34. Shahroudy, A., Liu, J., Ng, T.-T., et al: ‘NTU RGB+D: a large scale dataset for 3D human activity analysis’, arXiv preprint arXiv:1604.02808.
        .
    35. 35)
      • E. Grenader , D. Gasques Rodrigues , F. Nos .
        35. Grenader, E., Gasques Rodrigues, D., Nos, F., et al: ‘The VideoMob interactive art installation connecting strangers through inclusive digital crowds’, ACM Trans. Inter. Intell. Syst., 2015, 5, (2), pp. 7:17:31.
        . ACM Trans. Inter. Intell. Syst. , 2 , 7:1 - 7:31
    36. 36)
      • E.E. Stone , M. Skubic .
        36. Stone, E.E., Skubic, M.: ‘Fall detection in homes of older adults using the Microsoft Kinect’, IEEE J. Biomed. Health Inf., 2015, 19, (1), pp. 290301.
        . IEEE J. Biomed. Health Inf. , 1 , 290 - 301
    37. 37)
      • N. Zhu , T. Diethe , M. Camplani .
        37. Zhu, N., Diethe, T., Camplani, M., et al: ‘Bridging e-health and the internet of things: the SPHERE project’, IEEE Intell. Syst., 2015, 30, (4), pp. 3946.
        . IEEE Intell. Syst. , 4 , 39 - 46
    38. 38)
      • N. Dalal , B. Triggs .
        38. Dalal, N., Triggs, B.: ‘Histograms of oriented gradients for human detection’. IEEE Computer Vision and Pattern Recognition Conf., 2005, pp. 886893.
        . IEEE Computer Vision and Pattern Recognition Conf. , 886 - 893
    39. 39)
      • L. Bourdev , J. Malik .
        39. Bourdev, L., Malik, J.: ‘Poselets: body part detectors trained using 3D human pose annotations’. IEEE Int. Conf. on Computer Vision, 2009, pp. 13651372.
        . IEEE Int. Conf. on Computer Vision , 1365 - 1372
    40. 40)
      • P.F. Felzenszwalb , R.B. Girshick , D. McAllester .
        40. Felzenszwalb, P.F., Girshick, R.B., McAllester, D., et al: ‘Object detection with discriminatively trained part based models’, IEEE Trans. Pattern Anal. Mach. Intell., 2010, 32, (9), pp. 16271645.
        . IEEE Trans. Pattern Anal. Mach. Intell. , 9 , 1627 - 1645
    41. 41)
      • P. Viola , M. Jones .
        41. Viola, P., Jones, M.: ‘Robust real-time face detection’, Int. J. Comput. Vis., 2004, 57, (2), pp. 137154.
        . Int. J. Comput. Vis. , 2 , 137 - 154
    42. 42)
      • M. Bansal , S.-H. Jung , B. Matei .
        42. Bansal, M., Jung, S.-H., Matei, B., et al: ‘A real-time pedestrian detection system based on structure and appearance classification’. IEEE Int. Conf. on Robotics and Automation, 2010, pp. 903909.
        . IEEE Int. Conf. on Robotics and Automation , 903 - 909
    43. 43)
      • J. Salas , C. Tomasi .
        43. Salas, J., Tomasi, C.: ‘People detection using color and depth images’. Mexican Conf. on Pattern Recognition, 2011, pp. 127135.
        . Mexican Conf. on Pattern Recognition , 127 - 135
    44. 44)
      • B.-K. Dan , Y.-S. Kim , J.-Y. Suryanto .
        44. Dan, B.-K., Kim, Y.-S., Suryanto, J.-Y., et al: ‘Robust people counting system based on sensor fusion’, IEEE Trans. Consum. Electron., 2012, 58, (3), pp. 10131021.
        . IEEE Trans. Consum. Electron. , 3 , 1013 - 1021
    45. 45)
      • T. Darrell , G. Gordon , M. Harville .
        45. Darrell, T., Gordon, G., Harville, M., et al: ‘Integrated person tracking using stereo, color, and pattern detection’, Int. J. Comput. Vis., 2000, 37, (2), pp. 175185.
        . Int. J. Comput. Vis. , 2 , 175 - 185
    46. 46)
      • J. Han , E.J. Pauwels , P.M. de Zeeuw .
        46. Han, J., Pauwels, E.J., de Zeeuw, P.M., et al: ‘Employing a RGB-D sensor for real-time tracking of humans across multiple re-entries in a smart environment’, IEEE Trans. Consum. Electron., 2012, 58, (2), pp. 255263.
        . IEEE Trans. Consum. Electron. , 2 , 255 - 263
    47. 47)
      • M. Bajracharya , B. Moghaddam , A. Howard .
        47. Bajracharya, M., Moghaddam, B., Howard, A., et al: ‘A fast stereo-based system for detecting and tracking pedestrians from a moving vehicle’, The Int. J. Robot. Res., 2009, 28, (11-12), pp. 14661485.
        . The Int. J. Robot. Res. , 1466 - 1485
    48. 48)
      • H. Zhang , C. Reardon , L. Parker .
        48. Zhang, H., Reardon, C., Parker, L.: ‘Real-time multiple human perception with color-depth cameras on a mobile robot’, IEEE Trans. Cybern., 2013, 43, (5), pp. 14291441.
        . IEEE Trans. Cybern. , 5 , 1429 - 1441
    49. 49)
      • G. Galamakis , X. Zabulis , P. Koutlemanis .
        49. Galamakis, G., Zabulis, X., Koutlemanis, P., et al: ‘Tracking persons using a network of RGBD cameras’. Int. Conf. on Pervasive Technologies for Assistive Environments, 2014, pp. 63:163:4.
        . Int. Conf. on Pervasive Technologies for Assistive Environments , 63:1 - 63:4
    50. 50)
      • J. Liu , Y. Liu , Y. Cui .
        50. Liu, J., Liu, Y., Cui, Y., et al: ‘Real-time human detection and tracking in complex environments using single RGB-D camera’. IEEE Int. Conf. on Image Processing, 2013, pp. 30883092.
        . IEEE Int. Conf. on Image Processing , 3088 - 3092
    51. 51)
      • J. Liu , Y. Liu , G. Zhang .
        51. Liu, J., Liu, Y., Zhang, G., et al: ‘Detecting and tracking people in real time with RGB-D camera’, Pattern Recognit. Lett., 2015, 53, pp. 1623.
        . Pattern Recognit. Lett. , 16 - 23
    52. 52)
      • J. Liu , G. Zhang , Y. Liu .
        52. Liu, J., Zhang, G., Liu, Y., et al: ‘An ultra-fast human detection method for color-depth camera’, J. Vis. Commun. Image Represent., 2015, 31, pp. 177185.
        . J. Vis. Commun. Image Represent. , 177 - 185
    53. 53)
      • M. Luber , L. Spinello , K.O. Arras .
        53. Luber, M., Spinello, L., Arras, K.O.: ‘People tracking in RGB-D data with on-line boosted target models’. Int. Conf. on Intelligent Robots and Systems, 2011, pp. 38443849.
        . Int. Conf. on Intelligent Robots and Systems , 3844 - 3849
    54. 54)
      • T. Linder , K.O. Arras .
        54. Linder, T., Arras, K.O.: ‘Multi-model hypothesis tracking of groups of people in RGB-D data’. IEEE Conf. on Information Fusion, Salamanca, Spain, 2014, pp. 17.
        . IEEE Conf. on Information Fusion , 1 - 7
    55. 55)
      • A. Ess , B. Leibe , K. Schindler .
        55. Ess, A., Leibe, B., Schindler, K., et al: ‘Robust multiperson tracking from a mobile platform’, IEEE Trans. Pattern Anal. Mach. Intell., 2009, 31, (10), pp. 18311846.
        . IEEE Trans. Pattern Anal. Mach. Intell. , 10 , 1831 - 1846
    56. 56)
      • O. Jafari , D. Mitzel , B. Leibe .
        56. Jafari, O., Mitzel, D., Leibe, B.: ‘Real-time RGB-D based people detection and tracking for mobile robots and head-worn cameras’. IEEE Conf. on Robotics and Automation, 2014, pp. 56365643.
        . IEEE Conf. on Robotics and Automation , 5636 - 5643
    57. 57)
      • R. Muñoz Salinas , E. Aguirre , M. Garća-Silvente .
        57. Muñoz Salinas, R., Aguirre, E., Garća-Silvente, M.: ‘People detection and tracking using stereo vision and color’, Image Vis. Comput., 2007, 25, (6), pp. 9951007.
        . Image Vis. Comput. , 6 , 995 - 1007
    58. 58)
      • M. Munaro , F. Basso , E. Menegatti .
        58. Munaro, M., Basso, F., Menegatti, E.: ‘Tracking people within groups with RGB-D data’. IEEE/RSJ Conf. on Intelligent Robots and Systems, 2012, pp. 21012107.
        . IEEE/RSJ Conf. on Intelligent Robots and Systems , 2101 - 2107
    59. 59)
      • M. Munaro , C. Lewis , D. Chambers .
        59. Munaro, M., Lewis, C., Chambers, D., et al: ‘RGB-D human detection and tracking for industrial environments’. Int. Conf. on Intelligent Autonomous Systems, 2014, pp. 16551668.
        . Int. Conf. on Intelligent Autonomous Systems , 1655 - 1668
    60. 60)
      • E. Almazán , G. Jones .
        60. Almazán, E., Jones, G.: ‘A depth-based polar coordinate system for people segmentation and tracking with multiple RGB-D sensors’. IEEE ISMAR Workshop on Tracking Methods and Applications, 2014.
        . IEEE ISMAR Workshop on Tracking Methods and Applications
    61. 61)
      • E. Almazán , G. Jones .
        61. Almazán, E., Jones, G.: ‘Tracking people across multiple non-overlapping RGB-D sensors’. IEEE Conf. on Computer Vision and Pattern Recognition Workshops, 2013, pp. 831837.
        . IEEE Conf. on Computer Vision and Pattern Recognition Workshops , 831 - 837
    62. 62)
      • S. Bahadori , L. Iocchi , G. Leone .
        62. Bahadori, S., Iocchi, L., Leone, G., et al: ‘Real-time people localization and tracking through fixed stereo vision’. Innovations in Applied Artificial Intelligence, 2005, pp. 4454.
        . Innovations in Applied Artificial Intelligence , 44 - 54
    63. 63)
      • D. Beymer , K. Konolige .
        63. Beymer, D., Konolige, K.: ‘Real-time tracking of multiple people using stereo’. IEEE Conf. on Computer Vision Workshops, 1999, pp. 10761083.
        . IEEE Conf. on Computer Vision Workshops , 1076 - 1083
    64. 64)
      • J. Satake , M. Chiba , J. Miura .
        64. Satake, J., Chiba, M., Miura, J.: ‘Visual person identification using a distance-dependent appearance model for a person following robot’, Int. J. Autom. Comput., 2013, 10, (5), pp. 438446.
        . Int. J. Autom. Comput. , 5 , 438 - 446
    65. 65)
      • D.M. Vo , L. Jiang , A. Zell .
        65. Vo, D.M., Jiang, L., Zell, A.: ‘Real time person detection and tracking by mobile robots using RGB-D images’. IEEE Conf. on Robotics and Biomimetics, 2014, pp. 689694.
        . IEEE Conf. on Robotics and Biomimetics , 689 - 694
    66. 66)
      • D.M. Vo , A. Masselli , A. Zell .
        66. Vo, D.M., Masselli, A., Zell, A.: ‘Real time face detection using geometric constraints, navigation and depth-based skin segmentation on mobile robots’. IEEE Symp. on Robotic and Sensors Environments, 2012, pp. 180185.
        . IEEE Symp. on Robotic and Sensors Environments , 180 - 185
    67. 67)
      • M. Harville .
        67. Harville, M.: ‘Stereo person tracking with adaptive plan-view templates of height and occupancy statistics’, Image Vis. Comput., 2004, 22, (2), pp. 127142.
        . Image Vis. Comput. , 2 , 127 - 142
    68. 68)
      • R. Muñoz Salinas .
        68. Muñoz Salinas, R.: ‘A Bayesian plan-view map based approach for multiple-person detection and tracking’, Pattern Recogn., 2008, 41, (12), pp. 36653676.
        . Pattern Recogn. , 12 , 3665 - 3676
    69. 69)
      • R. Muñoz Salinas , R. Medina-Carnicer , F. Madrid-Cuevas .
        69. Muñoz Salinas, R., Medina-Carnicer, R., Madrid-Cuevas, F.: ‘A. Carmona-Poyato, People detection and tracking with multiple stereo cameras using particle filters’, J. Vis. Commun. Image Represent., 2009, 20, (5), pp. 339350.
        . J. Vis. Commun. Image Represent. , 5 , 339 - 350
    70. 70)
      • R. Muñoz Salinas , M. Garća-Silvente , R.M. Carnicer .
        70. Muñoz Salinas, R., Garća-Silvente, M., Carnicer, R.M.: ‘Adaptive multi-modal stereo people tracking without background modelling’, J. Vis. Commun. Image Represent., 2008, 19, (2), pp. 7591.
        . J. Vis. Commun. Image Represent. , 2 , 75 - 91
    71. 71)
      • W. Choi , C. Pantofaru , S. Savarese .
        71. Choi, W., Pantofaru, C., Savarese, S.: ‘Detecting and tracking people using an RGB-D camera via multiple detector fusion’. IEEE Conf. on Computer Vision Workshops, 2011, pp. 10761083.
        . IEEE Conf. on Computer Vision Workshops , 1076 - 1083
    72. 72)
      • W. Choi , C. Pantofaru , S. Savarese .
        72. Choi, W., Pantofaru, C., Savarese, S.: ‘A general framework for tracking multiple people from a moving camera’, IEEE Trans. Pattern Anal. Mach. Intell., 2013, 35, (7), pp. 15771591.
        . IEEE Trans. Pattern Anal. Mach. Intell. , 7 , 1577 - 1591
    73. 73)
      • C. Migniot , F. Ababsa .
        73. Migniot, C., Ababsa, F.: ‘Hybrid 3D–2D human tracking in a top view’, J. Real-Time Image Process., 2016, 11, (4), pp. 769784.
        . J. Real-Time Image Process. , 4 , 769 - 784
    74. 74)
      • S. Gao , Z. Han , C. Li .
        74. Gao, S., Han, Z., Li, C., et al: ‘Real-time multipedestrian tracking in traffic scenes via an RGB-D-based layered graph model’, IEEE Trans. Intell. Transp. Syst., 2015, 16, (5), pp. 28142825.
        . IEEE Trans. Intell. Transp. Syst. , 5 , 2814 - 2825
    75. 75)
      • A.J. Ma , P.C. Yuen , S. Saria .
        75. Ma, A.J., Yuen, P.C., Saria, S.: ‘Deformable distributed multiple detector fusion for multi-person tracking’, arXiv preprint arXiv:1512.05990, 2015.
        .
    76. 76)
      • Y. Rubner , C. Tomasi , L. Guibas .
        76. Rubner, Y., Tomasi, C., Guibas, L.: ‘The earth mover's distance as a metric for image retrieval’, J. Int. Comput. Vis., 2000, 40, (2), pp. 99121.
        . J. Int. Comput. Vis. , 2 , 99 - 121
    77. 77)
      • A.A. Argyros , M.I. Lourakis .
        77. Argyros, A.A., Lourakis, M.I.: ‘Real-time tracking of multiple skin-colored objects with a possibly moving camera’. European Conf. on Computer Vision, 2004, pp. 368379.
        . European Conf. on Computer Vision , 368 - 379
    78. 78)
      • P. Padeleris , X. Zabulis , A. Argyros .
        78. Padeleris, P., Zabulis, X., Argyros, A.: ‘Multicamera tracking of multiple humans based on colored visual hulls’. IEEE Conf. on Emerging Technologies Factory Automation, 2013, pp. 18.
        . IEEE Conf. on Emerging Technologies Factory Automation , 1 - 8
    79. 79)
      • I.J. Cox , S.L. Hingorani .
        79. Cox, I.J., Hingorani, S.L.: ‘An efficient implementation of Reid's multiple hypothesis tracking algorithm and its evaluation for the purpose of visual tracking’, IEEE Trans. Pattern Anal. Mach. Intell., 1996, 18, (2), pp. 138150.
        . IEEE Trans. Pattern Anal. Mach. Intell. , 2 , 138 - 150
    80. 80)
      • C. Eveland , K. Konolige , R. Bolles .
        80. Eveland, C., Konolige, K., Bolles, R.: ‘Background modeling for segmentation of video-rate stereo sequences’. IEEE Computer Vision and Pattern Recognition, 1998, pp. 266271.
        . IEEE Computer Vision and Pattern Recognition , 266 - 271
    81. 81)
      • B. Leibe , K. Schindler , N. Cornelis .
        81. Leibe, B., Schindler, K., Cornelis, N., et al: ‘Coupled object detection and tracking from static cameras and moving vehicles’, IEEE Trans. Pattern Anal. Mach. Intell., 2008, 30, (10), pp. 16831698.
        . IEEE Trans. Pattern Anal. Mach. Intell. , 10 , 1683 - 1698
    82. 82)
      • P. Sudowe , B. Leibe .
        82. Sudowe, P., Leibe, B.: ‘Efficient use of geometric constraints for sliding-window object detection in video’. Computer Vision Systems, 2011, pp. 1120.
        . Computer Vision Systems , 11 - 20
    83. 83)
      • J. Satake , J. Miura .
        83. Satake, J., Miura, J.: ‘Robust stereo-based person detection and tracking for a person following robot’. ICRA Workshop on People Detection and Tracking, 2009, pp. 110.
        . ICRA Workshop on People Detection and Tracking , 1 - 10
    84. 84)
      • D. Lowe .
        84. Lowe, D.: ‘Object recognition from local scale-invariant features’. IEEE Conf. on Computer Vision, 1999, pp. 11501157.
        . IEEE Conf. on Computer Vision , 1150 - 1157
    85. 85)
      • H. Kuhn .
        85. Kuhn, H.: ‘The Hungarian method for the assignment problem’, Naval Res. Logist. Q., 1955, 2, pp. 8397.
        . Naval Res. Logist. Q. , 83 - 97
    86. 86)
      • M. Harville , G. Gordon , J. Woodfill .
        86. Harville, M., Gordon, G., Woodfill, J.: ‘Foreground segmentation using adaptive mixture models in color and depth’. IEEE Workshop on Detection and Recognition of Events in Video, 2001, pp. 311.
        . IEEE Workshop on Detection and Recognition of Events in Video , 3 - 11
    87. 87)
      • A. Milan , K. Schindler , S. Roth .
        87. Milan, A., Schindler, K., Roth, S.: ‘Multi-target tracking by discrete-continuous energy minimization’, IEEE Trans. Pattern Anal. Mach. Intell., 2016, 38, (10), pp. 20542068.
        . IEEE Trans. Pattern Anal. Mach. Intell. , 10 , 2054 - 2068
    88. 88)
      • D. Comaniciu , P. Meer .
        88. Comaniciu, D., Meer, P.: ‘Mean shift: a robust approach toward feature space analysis’, IEEE Trans. Pattern Anal. Mach. Intell., 2002, 24, (5), pp. 603619.
        . IEEE Trans. Pattern Anal. Mach. Intell. , 5 , 603 - 619
    89. 89)
      • D.R. Chambers , C. Flannigan , B. Wheeler .
        89. Chambers, D.R., Flannigan, C., Wheeler, B.: ‘High-accuracy real-time pedestrian detection system using 2D and 3D features’. SPIE Defense, Security, and Sensing, 2012, vol. 8384, pp. 83840G83840G–11.
        . SPIE Defense, Security, and Sensing , 83840G - 83840G–11
    90. 90)
      • M.A. Fischler , R.C. Bolles .
        90. Fischler, M.A., Bolles, R.C.: ‘Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography’, Commun. ACM, 1981, 24, (6), pp. 381395.
        . Commun. ACM , 6 , 381 - 395
    91. 91)
      • A. Vedaldi , S. Soatto .
        91. Vedaldi, A., Soatto, S.: ‘Quick Shift and kernel methods for mode seeking’. European Conf. on Computer Vision, 2008, pp. 705718.
        . European Conf. on Computer Vision , 705 - 718
    92. 92)
      • M. Camplani , L. Salgado .
        92. Camplani, M., Salgado, L.: ‘Background foreground segmentation with RGB-D Kinect data: an efficient combination of classifiers’, J. Vis. Commun. Image Represent., 2014, 25, (1), pp. 122136.
        . J. Vis. Commun. Image Represent. , 1 , 122 - 136
    93. 93)
      • M. Camplani , C.R. del Blanco , L. Salgado .
        93. Camplani, M., del Blanco, C.R., Salgado, L., et al: ‘Advanced background modeling with RGB-D sensors through classifiers combination and inter-frame foreground prediction’, Mach. Vis. Appl., 2014, 25, (5), pp. 11971210.
        . Mach. Vis. Appl. , 5 , 1197 - 1210
    94. 94)
      • G. Gordon , T. Darrell , J. Woodfill .
        94. Gordon, G., Darrell, T., Woodfill, J.: ‘Background estimation and removal based on range and color’. IEEE Conf. on Computer Vision and Pattern Recognition, 1999.
        . IEEE Conf. on Computer Vision and Pattern Recognition
    95. 95)
      • J. Kammerl .
        95. Kammerl, J.: ‘Octree Point Cloud Compression in PCL’, 2011.
        .
    96. 96)
      • D. Ganotra , J. Joseph , K. Singh .
        96. Ganotra, D., Joseph, J., Singh, K.: ‘Modified geometry of ring-wedge detector for sampling Fourier transform of fingerprints for classification using neural networks’, Opt. Lasers Eng., 2004, 42, (2), pp. 167177.
        . Opt. Lasers Eng. , 2 , 167 - 177
    97. 97)
      • M. Quigley , K. Conley , B.P. Gerkey .
        97. Quigley, M., Conley, K., Gerkey, B.P., et al: ‘ROS: an open-source robot operating system’. ICRA Workshop on Open Source Software, 2009.
        . ICRA Workshop on Open Source Software
    98. 98)
      • M. Munaro , A. Horn , R. Illum .
        98. Munaro, M., Horn, A., Illum, R., et al: ‘OpenPTrack: people tracking for heterogeneous networks of color-depth cameras’. IAS Workshop on 3D Robot Perception with Point Cloud Library, 2014, pp. 235247.
        . IAS Workshop on 3D Robot Perception with Point Cloud Library , 235 - 247
    99. 99)
      • M. Munaro , F. Basso , E. Menegatti .
        99. Munaro, M., Basso, F., Menegatti, E.: ‘OpenPTrack: open source multi-camera calibration and people tracking for RGB-D camera networks’, Robot. Auton. Syst., 2016, 75, Part B, pp. 525538.
        . Robot. Auton. Syst. , 525 - 538
    100. 100)
      • A. Ess , B. Leibe , K. Schindler .
        100. Ess, A., Leibe, B., Schindler, K., et al: ‘A mobile vision system for robust multi-person tracking’. IEEE Conf. on Computer Vision and Pattern Recognition, 2008, pp. 18.
        . IEEE Conf. on Computer Vision and Pattern Recognition , 1 - 8
    101. 101)
      • M. Munaro , E. Menegatti .
        101. Munaro, M., Menegatti, E.: ‘Fast RGB-D people tracking for service robots’, Auton. Robots, 2014, 37, (3), pp. 227242.
        . Auton. Robots , 3 , 227 - 242
    102. 102)
      • P.F. Felzenszwalb , D.P. Huttenlocher .
        102. Felzenszwalb, P.F., Huttenlocher, D.P.: ‘Efficient belief propagation for early vision’, Int. J. Comput. Vis., 2006, 70, (1), pp. 4154.
        . Int. J. Comput. Vis. , 1 , 41 - 54
    103. 103)
      • L. Leal-Taixé , A. Milan , I. Reid .
        103. Leal-Taixé, L., Milan, A., Reid, I., et al: ‘MOTChallenge 2015: Towards a Benchmark for Multi-Target Tracking’, arXiv:1504.01942 [cs]ArXiv: 1504.01942.
        .
    104. 104)
      • R.B. Rusu , S. Cousins .
        104. Rusu, R.B., Cousins, S.: ‘3D is here: Point Cloud Library (PCL)’. IEEE Int. Conf. on Robotics and Automation, 2011, pp. 14.
        . IEEE Int. Conf. on Robotics and Automation , 1 - 4
    105. 105)
      • D. Mitzel , B. Leibe .
        105. Mitzel, D., Leibe, B.: ‘Close-range human detection and tracking for head-mounted cameras’. British Machine Vision Conf., 2012, pp. 8.18.11.
        . British Machine Vision Conf. , 8.1 - 8.11
    106. 106)
      • K. Bernardin , R. Stiefelhagen .
        106. Bernardin, K., Stiefelhagen, R.: ‘Evaluating multiple object tracking performance: the CLEAR MOT metrics’, J. Image Video Process., 2008, 2008, pp. 1:11:10.
        . J. Image Video Process. , 1:1 - 1:10
    107. 107)
      • M. Szczodrak , P. Dalka , A. Czyzewski .
        107. Szczodrak, M., Dalka, P., Czyzewski, A.: ‘Performance evaluation of video object tracking algorithm in autonomous surveillance system’. Int. Conf. on Information Technology, 2010, pp. 3134.
        . Int. Conf. on Information Technology , 31 - 34
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cvi.2016.0178
Loading

Related content

content/journals/10.1049/iet-cvi.2016.0178
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address