http://iet.metastore.ingenta.com
1887

Saliency detection using adaptive background template

Saliency detection using adaptive background template

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Computer Vision — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Since most existing saliency detection models are not suitable for the condition that the salient objects are near at the image border, the authors propose a saliency detection approach based on adaptive background template (SCB) despite of the position of the salient objects. First, a selection strategy is presented to establish the adaptive background template by removing the potential saliency superpixels from the image border regions, and the initial saliency map is obtained. Second, a propagation mechanism based on K-means algorithm is designed for maintaining the neighbourhood coherence of the above saliency map. Finally, a new spatial prior is presented to integrate the saliency detection results by aggregating two complementary measures such as image centre preference and the background template exclusion. Comprehensive evaluations on six benchmark datasets indicate that the authors’ method outperforms other state-of-the-art approaches. In addition, a new dataset containing 300 challenging images is constructed for evaluating the performance of various salient object detection methods.

References

    1. 1)
      • M. Donoser , M. Urschler , M. Hirzer .
        1. Donoser, M., Urschler, M., Hirzer, M., et al: ‘Saliency driven total variation segmentation’. IEEE 2009 Int. Conf. on Computer Vision, Sakyo, Kyoto, Japan, 29 September–2 October 2009, pp. 817824.
        . IEEE 2009 Int. Conf. on Computer Vision , 817 - 824
    2. 2)
      • Z. Ren , S. Gao , L.T. Chia .
        2. Ren, Z., Gao, S., Chia, L.T., et al: ‘Region-based saliency detection and its application in object recognition’, IEEE Trans. Circuits Syst. Video Technol., 2014, 24, pp. 769779.
        . IEEE Trans. Circuits Syst. Video Technol. , 769 - 779
    3. 3)
      • T. Chen , M.M. Cheng , P. Tan .
        3. Chen, T., Cheng, M.M., Tan, P., et al: ‘Sketch2Photo: internet image montage’, ACM Trans. Graph., 2009, 28, pp. 124124.
        . ACM Trans. Graph. , 124 - 124
    4. 4)
      • S. Battiato , G.M. Farinella , G. Puglisi .
        4. Battiato, S., Farinella, G.M., Puglisi, G., et al: ‘Saliency based selection of gradient vector flow paths for content aware image resizing’, IEEE Trans. Image Process., 2014, 23, (5), pp. 20812095.
        . IEEE Trans. Image Process. , 5 , 2081 - 2095
    5. 5)
      • W. Hu , R. Hu , N. Xie .
        5. Hu, W., Hu, R., Xie, N., et al: ‘Image classification using multiscale information fusion based on saliency driven nonlinear diffusion filtering’, IEEE Trans. Image Process., 2014, 23, pp. 15131526.
        . IEEE Trans. Image Process. , 1513 - 1526
    6. 6)
      • L. Duan , C. Wu , J. Miao .
        6. Duan, L., Wu, C., Miao, J., et al: ‘Visual saliency detection by spatially weighted dissimilarity’. IEEE Conf. on Computer Vision and Pattern Recognition, Providence, USA, 20–25 June 2011, pp. 473480.
        . IEEE Conf. on Computer Vision and Pattern Recognition , 473 - 480
    7. 7)
      • Y. Wei , F. Wen , W. Zhu .
        7. Wei, Y., Wen, F., Zhu, W., et al: ‘Geodesic saliency using background priors’. Computer Vision – ECCV 2012, Berlin, Germany, 2012, pp. 2942.
        . Computer Vision – ECCV 2012 , 29 - 42
    8. 8)
      • X. Li , H. Lu , L. Zhang .
        8. Li, X., Lu, H., Zhang, L., et al: ‘Saliency detection via dense and sparse reconstruction’. Proc. of the IEEE Int. Conf. on Computer Vision, Sydney, Australia, 1–8 December 2013, pp. 29762983.
        . Proc. of the IEEE Int. Conf. on Computer Vision , 2976 - 2983
    9. 9)
      • M.M. Cheng , G.X. Zhang , N.J. Mitra .
        9. Cheng, M.M., Zhang, G.X., Mitra, N.J., et al: ‘Global contrast based salient region detection’, IEEE Trans. Pattern Anal. Mach. Intell., 2015, 37, pp. 569582.
        . IEEE Trans. Pattern Anal. Mach. Intell. , 569 - 582
    10. 10)
      • C. Yang , L. Zhang , H. Lu .
        10. Yang, C., Zhang, L., Lu, H., et al: ‘Saliency detection via graph-based manifold ranking’. Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition, Portland, USA, 23–28 June 2013, pp. 31663173.
        . Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition , 3166 - 3173
    11. 11)
      • B. Jiang , L. Zhang , H. Lu .
        11. Jiang, B., Zhang, L., Lu, H., et al: ‘Saliency detection via absorbing Markov chain’. Proc. of the IEEE Int. Conf. on Computer Vision, Sydney, Australia, 1–8 December 2013, pp. 16651672.
        . Proc. of the IEEE Int. Conf. on Computer Vision , 1665 - 1672
    12. 12)
      • H. Jiang , J. Wang , Z. Yuan .
        12. Jiang, H., Wang, J., Yuan, Z., et al: ‘Salient object detection: a discriminative regional feature integration approach’. Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition, Portland, USA, 23–28 June 2013, pp. 20832090.
        . Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition , 2083 - 2090
    13. 13)
      • W. Zhu , S. Liang , Y. Wei .
        13. Zhu, W., Liang, S., Wei, Y., et al: ‘Saliency optimization from robust background detection’. Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition, Columbus, USA, 23–28 June 2014, pp. 28142821.
        . Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition , 2814 - 2821
    14. 14)
      • H. Jiang , Y. Wu , Z. Yuan .
        14. Jiang, H., Wu, Y., Yuan, Z.: ‘Probabilistic salient object contour detection based on superpixels’. IEEE Int. Conf. on Image Processing, Melbourne, Australia, 15–18 September 2013, pp. 30693072.
        . IEEE Int. Conf. on Image Processing , 3069 - 3072
    15. 15)
      • L. Itti , C. Koch , E. Niebur .
        15. Itti, L., Koch, C., Niebur, E.: ‘A model of saliency-based visual attention for rapid scene analysis’, IEEE Trans. Pattern Anal. Mach. Intell., 1998, 11, pp. 12541259.
        . IEEE Trans. Pattern Anal. Mach. Intell. , 1254 - 1259
    16. 16)
      • A. Borji , M.M. Cheng , H. Jiang .
        16. Borji, A., Cheng, M.M., Jiang, H., et al: ‘Salient object detection: a benchmark’, IEEE Trans. Image Process., 2015, 24, pp. 57065722.
        . IEEE Trans. Image Process. , 5706 - 5722
    17. 17)
      • R. Achanta , S. Hemami , F. Estrada .
        17. Achanta, R., Hemami, S., Estrada, F., et al: ‘Frequency-tuned salient region detection’. IEEE Conf. on Computer Vision and Pattern Recognition, Miami, USA, 20–25 June 2009, pp. 15971604.
        . IEEE Conf. on Computer Vision and Pattern Recognition , 1597 - 1604
    18. 18)
      • E. Rahtu , J. Kannala , M. Salo .
        18. Rahtu, E., Kannala, J., Salo, M., et al: ‘Segmenting salient objects from images and videos’. Computer Vision – ECCV 2010, Berlin, Germany, 2010, pp. 366379.
        . Computer Vision – ECCV 2010 , 366 - 379
    19. 19)
      • S. Goferman , L. Zelnik-Manor , A. Tal .
        19. Goferman, S., Zelnik-Manor, L., Tal, A.: ‘Context-aware saliency detection’, IEEE Trans. Pattern Anal. Mach. Intell., 2012, 34, pp. 19151926.
        . IEEE Trans. Pattern Anal. Mach. Intell. , 1915 - 1926
    20. 20)
      • R. Valenti , N. Sebe , T. Gevers .
        20. Valenti, R., Sebe, N., Gevers, T.: ‘Image saliency by isocentric curvedness and color’. IEEE 12th Int. Conf. on Computer Vision, Kyoto, Japan, 29 September–2 October 2009, pp. 21852192.
        . IEEE 12th Int. Conf. on Computer Vision , 2185 - 2192
    21. 21)
      • M.M. Cheng , J. Warrell , W.Y. Lin .
        21. Cheng, M.M., Warrell, J., Lin, W.Y., et al: ‘Efficient salient region detection with soft image abstraction’. Proc. of the IEEE Int. Conf. on Computer Vision, Sydney, Australia, 1–8 December 2013, pp. 15291536.
        . Proc. of the IEEE Int. Conf. on Computer Vision , 1529 - 1536
    22. 22)
      • X. Shen , Y. Wu .
        22. Shen, X., Wu, Y.: ‘A unified approach to salient object detection via low rank matrix recovery’. IEEE Conf. on Computer Vision and Pattern Recognition, Providence, USA, 16–21 June 2012, pp. 853860.
        . IEEE Conf. on Computer Vision and Pattern Recognition , 853 - 860
    23. 23)
      • Y.F. Ma , H.J. Zhang .
        23. Ma, Y.F., Zhang, H.J.: ‘Contrast-based image attention analysis by using fuzzy growing’. Proc. of the Eleventh ACM Int. Conf. on Multimedia, New York, USA, 2–8 November 2003, pp. 374381.
        . Proc. of the Eleventh ACM Int. Conf. on Multimedia , 374 - 381
    24. 24)
      • Y. Qin , H. Lu , Y. Xu .
        24. Qin, Y., Lu, H., Xu, Y., et al: ‘Saliency detection via cellular automata’. Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition, Boston, USA, 7–12 June 2015, pp. 110119.
        . Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition , 110 - 119
    25. 25)
      • J. Sun , H. Lu , X. Liu .
        25. Sun, J., Lu, H., Liu, X.: ‘Saliency region detection based on Markov absorption probabilities’, IEEE Trans. Image Process., 2015, 24, (5), pp. 16391649.
        . IEEE Trans. Image Process. , 5 , 1639 - 1649
    26. 26)
      • W.C. Tu , S. He , Q. Yang .
        26. Tu, W.C., He, S., Yang, Q., et al: ‘Real-time salient object detection with a minimum spanning tree’. Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition, 2016, pp. 23342342.
        . Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition , 2334 - 2342
    27. 27)
      • R. Achanta , A. Shaji , K. Smith .
        27. Achanta, R., Shaji, A., Smith, K., et al: ‘SLIC superpixels compared to state-of-the-art superpixel methods’, IEEE Trans. Pattern Anal. Mach. Intell., 2012, 34, pp. 22742282.
        . IEEE Trans. Pattern Anal. Mach. Intell. , 2274 - 2282
    28. 28)
      • A. Borji .
        28. Borji, A.: ‘What is a salient object? a dataset and a baseline model for salient object detection’, IEEE Trans. Image Process., 2015, 24, (2), pp. 742756.
        . IEEE Trans. Image Process. , 2 , 742 - 756
    29. 29)
      • T. Judd , K. Ehinger , F. Durand .
        29. Judd, T., Ehinger, K., Durand, F., et al: ‘Learning to predict where humans look’. IEEE Int. Conf. on Computer Vision, Kyoto, Japan, 29 September–2 October 2009, pp. 21062113.
        . IEEE Int. Conf. on Computer Vision , 2106 - 2113
    30. 30)
      • Y. Zhai , M. Shah .
        30. Zhai, Y., Shah, M.: ‘Visual attention detection in video sequences using spatiotemporal cues’. Proc. of the 14th Annual ACM Int. Conf. on Multimedia, New York, USA, 23–27 October 2006, pp. 815824.
        . Proc. of the 14th Annual ACM Int. Conf. on Multimedia , 815 - 824
    31. 31)
      • V. Movahedi , J.H. Elder .
        31. Movahedi, V., Elder, J.H.: ‘Design and perceptual validation of performance measures for salient object segmentation’. IEEE Computer Society Conf. on Computer Vision and Pattern Recognition Workshops, San Francisco, USA, 13–18 June 2010, pp. 4956.
        . IEEE Computer Society Conf. on Computer Vision and Pattern Recognition Workshops , 49 - 56
    32. 32)
      • Q. Yan , L. Xu , J. Shi .
        32. Yan, Q., Xu, L., Shi, J., et al: ‘Hierarchical saliency detection’. Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition, Portland, USA, 23–28 June 2013, pp. 11551162.
        . Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition , 1155 - 1162
    33. 33)
      • S. Alpert , M. Galun , A. Brandt .
        33. Alpert, S., Galun, M., Brandt, A., et al: ‘Image segmentation by probabilistic bottom-up aggregation and cue integration’, IEEE Trans. Pattern Anal. Mach. Intell., 2012, 34, pp. 315327.
        . IEEE Trans. Pattern Anal. Mach. Intell. , 315 - 327
    34. 34)
      • W. Zou , K. Kpalma , Z. Liu .
        34. Zou, W., Kpalma, K., Liu, Z., et al: ‘Segmentation driven low-rank matrix recovery for saliency detection’. Proc. of the British Machine Vision Conf., Bristol, UK, 9–13 September 2013, pp. 113.
        . Proc. of the British Machine Vision Conf. , 1 - 13
    35. 35)
      • G. Li , Y. Yu .
        35. Li, G., Yu, Y.: ‘Visual saliency based on multiscale deep features’. Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition, Boston, USA, 7–12 June 2015, pp. 54555463.
        . Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition , 5455 - 5463
    36. 36)
      • X. Hou , L. Zhang .
        36. Hou, X., Zhang, L.: ‘Saliency detection: a spectral residual approach’. IEEE Conf. on Computer Vision and Pattern Recognition, Minneapolis, USA, 17–22 June 2007, pp. 18.
        . IEEE Conf. on Computer Vision and Pattern Recognition , 1 - 8
    37. 37)
      • N. Tong , H. Lu , Y. Zhang .
        37. Tong, N., Lu, H., Zhang, Y., et al: ‘Salient object detection via global and local cues’, Pattern Recognit., 2015, 48, pp. 32583267.
        . Pattern Recognit. , 3258 - 3267
    38. 38)
      • H. Li , H. Lu , Z. Lin .
        38. Li, H., Lu, H., Lin, Z., et al: ‘Inner and inter label propagation: salient object detection in the wild’, IEEE Trans. Image Process., 2015, 4, pp. 31763186.
        . IEEE Trans. Image Process. , 3176 - 3186
    39. 39)
      • J. Zhang , S. Sclaroff , Z. Lin .
        39. Zhang, J., Sclaroff, S., Lin, Z., et al: ‘Minimum barrier salient object detection at 80 fps’. Proc. of the IEEE Int. Conf. on Computer Vision, 2015, pp. 14041412.
        . Proc. of the IEEE Int. Conf. on Computer Vision , 1404 - 1412
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cvi.2016.0169
Loading

Related content

content/journals/10.1049/iet-cvi.2016.0169
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address