access icon free Analysis of 2D singularities for mammographic mass classification

Masses are one of the prevalent early signs of breast cancer, visible in mammogram. However, its variation in shape, size, and appearance often creates hazards in proper diagnosis of mammographic masses. This study analyses the 2D singularities of masses and their surrounding regions with Ripplet-II transform to classify them as benign and malignant. Since benign and malignant masses may change the orientation patterns of normal breast tissues differently, several textural features including Ripplet-II coefficients and statistical co-variates, derived from the Ripplet-II transformed images, are extracted to quantify the texture information of mammographic regions. The important features are then selected using stepwise logistic regression technique and evaluated using linear discriminant analysis and support vector machine with a ten-fold cross-validation. The best performance in terms of the area under the receiver operating characteristic curve of 0.91 ± 0.01 and 0.83 ± 0.01 and accuracy of 87.28 ± 0.02 and 75.60 ± 0.01 are obtained with the proposed method while experimenting with 58 images from the mini-MIAS and 200 images from the Digital Database for Screening Mammography database, respectively.

Inspec keywords: medical image processing; sensitivity analysis; image classification; cancer; biological organs; image texture; mammography; regression analysis; biological tissues; support vector machines

Other keywords: benign masses; breast cancer; ten-fold cross-validation; linear discriminant analysis; screening mammography database; mammographic regions; Ripplet-II transform; breast tissues; texture information; digital database; logistic regression technique; receiver operating characteristic curve; Ripplet-II coefficients; Ripplet-II transformed imaging; statistical covariates; mammographic mass classification; support vector machine; 2D singularity analysis; textural features; malignant masses

Subjects: Biology and medical computing; Patient diagnostic methods and instrumentation; Image recognition; Image recognition; Other topics in statistics; X-ray techniques: radiography and computed tomography (biomedical imaging/measurement); Computer vision and image processing techniques; X-rays and particle beams (medical uses); Probability theory, stochastic processes, and statistics; Knowledge engineering techniques; Other topics in statistics

References

    1. 1)
      • 8. Bojar, K., Nieniewski, M.: ‘New features for classification of cancerous masses in mammograms based on morphological dilation’. 5th Int. Conf. on Visual Information Engineering, VIE, 2008, pp. 111116.
    2. 2)
      • 45. Lesniak, J.M., Hupse, R., Blanc, R., et al: ‘Comparative evaluation of support vector machine classification for computer aided detection of breast masses in mammography’, Phys. Med. Biol., 2012, 57, pp. 52955307.
    3. 3)
      • 22. Muramatsu, C., Takeshi, H., Endo, T., et al: ‘Breast mass classification on mammograms using radial local ternary patterns’, Comput. Biol. Med., 2016, 72, pp. 4353.
    4. 4)
      • 7. Serifovic-Trbalic, A., Trbalic, A., Demirovic, D., et al: ‘Classification of benign and malignant masses in breast mammograms’. 37th Int. Convention on Informatics and Communication Technology, Electronics and Microelectronics (MIPRO), 2014, pp. 228233.
    5. 5)
      • 15. Rabidas, R., Midya, A., Sadhu, A., et al: ‘Benign-malignant mass classification in mammogram using edge weighted local texture features’. Proc. SPIE 9785, Medical Imaging, 2016, vol. 9785, pp. 97851X97851X-6.
    6. 6)
      • 18. Midya, A., Chakraborty, J.: ‘Classification of benign and malignant masses in mammograms using multi-resolution analysis of oriented patterns’. 6th Int. Symp. on Biomedical Imaging (ISBI), 2015, pp. 411414.
    7. 7)
      • 36. Suckling, J.: ‘The mammographic image analysis society digital mammogram database exerpta medica’. Int. Congress Series 1069, 1994, pp. 375378.
    8. 8)
      • 43. Wei, L., Yang, Y., Nishikawa, R.M., et al: ‘A study on several machine-learning methods for classification of malignant and benign clustered microcalcifications’, IEEE Trans. Med. Imaging, 2005, 24, pp. 371380.
    9. 9)
      • 9. Sun, L., Li, L., Xu, W., et al: ‘A novel classification scheme for breast masses based on multi-view information fusion’. 4th Int. Conf. on Bioinformatics and Biomedical Engineering (ICBBE) 2010, 2010, pp. 14.
    10. 10)
      • 2. Tang, J., Rangayyan, R.M., Xu, J., et al: ‘Computer-aided detection and diagnosis of breast cancer with mammography: recent advances’, IEEE Trans. Inf. Technol. Biomed., 2009, 13, pp. 236251.
    11. 11)
      • 13. Kim, S., Yoon, S.: ‘Mass lesions classification in digital mammography using optimal subset of BI-RADS and gray level features’. 6th Int. Special Topic Conf. on Information Technology Applications in Biomedicine (ITAB), 2007, pp. 99102.
    12. 12)
      • 12. Paramkushan, S., Rao, K., Rao, P.: ‘Early stage detection of breast cancer using novel image processing techniques, Matlab and Labview implementation’. 15th Int. Conf. on Advanced Computing Technologies (ICACT), 2013, pp. 15.
    13. 13)
      • 19. Tai, S.-C., Chen, Z.-S., Tsai, W.-T.: ‘An automatic mass detection system in mammograms based on complex texture features’, Int. J. Biomed. Health Inf., 2014, 18, pp. 618627.
    14. 14)
      • 37. Health, M., Bowyer, K., Kopans, D., et al: ‘Digital database for screening mammography’. Proc. Int. Workshop on Digital Mammography, Medical Physics Publishing, 2001, pp. 212218.
    15. 15)
      • 4. Homer, M.J.: ‘Mammographic interpretation: a practical approach’ (McGraw-Hill, New York, NY, 1997, 2nd edn.).
    16. 16)
      • 5. Grgel, P., Sertbas, A., Ucan, O.N.: ‘Mammographical mass detection and classification using local seed region growing-spherical wavelet transform (LSRG-SWT) hybrid scheme’, Comput. Biol. Med., 2013, 43, pp. 765774.
    17. 17)
      • 26. Sahiner, B., Chan, H.-P., Petrick, N., et al: ‘Improvement of mammographic mass characterization using speculation measures and morphological features’, Med. Phys., 2001, 28, pp. 14551465.
    18. 18)
      • 14. Mohanty, A., Senapati, M., Beberta, S., et al: ‘Mass classification method in mammograms using correlated association rule mining’, Neural Comput. Appl., 2013, 23, pp. 273281.
    19. 19)
      • 21. Vani, G., Savitha, R., Sundararajan, N.: ‘Classification of abnormalities in digitized mammograms using extreme learning machine’. 11th Int. Conf. on Control Automation Robotics Visions (ICARCV), 2010, pp. 21142117.
    20. 20)
      • 24. Azizi, N., Zemmal, N., Guissa, Y., et al: ‘Kernel based classifiers fusion with features diversity for breast masses classification’. 8th Int. Workshop on Signal Processing and their Applications (WoSSPA), 2013, pp. 116121.
    21. 21)
      • 41. Jaffar, M.A., Ahmed, B., Hussain, A., et al: ‘Multi domain features based classification of mammogram images using SVM and MLP’. 4th Int. Conf. on Innovative Computing, Information and Control (ICICIC) 2009, 2009, pp. 13011304.
    22. 22)
      • 17. Chakraborty, J., Midya, A., Mukhopadhyay, S., et al: ‘Automatic characterization of masses in mammograms’. 6th Int. Conf. on Biomedical Engineering and Informatics (BMEI), 2013, pp. 111115.
    23. 23)
      • 1. National Cancer Institute (NCI): ‘Cancer stat fact sheets: cancer of the breast’, http://www.seer.cancer.gov/statfacts/html/breast.html, accessed 14 October 2015.
    24. 24)
      • 30. Candes, E.J., Donoho, D.L.: ‘Ridgelets: a key to higher-dimensional intermittency?’, Philos. Trans. R. Soc. Lond. A, 1999, 357, pp. 24952509.
    25. 25)
      • 34. Le Pennec, E., Mallat, S.: ‘Sparse geometric image representations with bandelets’, IEEE Trans. Image Process., 2005, 14, pp. 423438.
    26. 26)
      • 3. Rangayyan, R.M., Banik, S., Chakraborty, J., et al: ‘Measures of divergence of oriented patterns for the detection of architectural distortion in prior mammograms’, Int. J. Compt Assist. Radiol. Surg., 2013, 8, pp. 527545.
    27. 27)
      • 10. Wei, C.-H., Chen, S.Y., Liu, X.: ‘Mammogram retrieval on similar mass lesions’, Comput. Methods Programs Biomed., 2012, 106, pp. 234248.
    28. 28)
      • 35. Xu, J., Wu, D.: ‘Ripplet transform for feature extraction’. Proc. SPIE 6970, Algorithms for Synthetic Aperture Radar Imagery XV, 2008, vol. 69700, pp. 69700X69700X-10.
    29. 29)
      • 6. Vadivel, A., Surendiran, B.: ‘A fuzzy rule-based approach for characterization of mammogram masses into BI-RADS shape categories’, Comput. Biol. Med., 2013, 43, pp. 259267.
    30. 30)
      • 40. Vapnik, V.: ‘The nature of statistical learning theory, Statistics for Engineering and Information Science’ (Springer-Verlag, 2000).
    31. 31)
      • 23. Laroussi, M., Ben Ayed, N., Masmoudi, A.: ‘Diagnosis of masses in mammographic images based on Zernike moments and Local binary attributes’. World Congress on Computer and Information Technology (WCCIT), 2013, pp. 16.
    32. 32)
      • 33. Do, M., Vetterli, M.: ‘The Contourlet transform: an efficient directional multiresolution image representation’, IEEE Trans. Image Process., 2005, 14, pp. 20912106.
    33. 33)
      • 11. Suganthi, M., Madheswaran, M.: ‘Mammogram tumor classification using multimodal features and genetic algorithm’. Int. Conf. on Control, Automation, Communication and Energy Conservation (INCACEC), 2009, pp. 16.
    34. 34)
      • 20. Li, X.-Z., Williams, S., Lee, G., et al: ‘Computer-aided mammography classification of malignant mass regions and normal regions based on novel texton features’. 12th Int. Conf. on Control Automation Robotics Visions (ICARCV), 2012, pp. 14311436.
    35. 35)
      • 29. Xu, J., Wu, D.: ‘Ripplet-II transform for feature extraction’. Proc. SPIE 7744, Visual Communications and Image Processing, 2010, vol. 77441, pp. 77441R77441R-10.
    36. 36)
      • 16. Liu, X., Liu, J., Zhou, D., et al: ‘A benign and malignant mass classification algorithm based on an improved level set segmentation and texture feature analysis’. 4th Int. Conf. on Bioinformatics and Biomedical Engineering (ICBBE) 2010, 2010, pp. 14.
    37. 37)
      • 32. Candes, E.J., Donoho, D.L.: ‘Curvelets: a surprisingly effective nonadoptive representation for objects with edges’ (Department of Statistics, Stanford University, 1999), pp. 110.
    38. 38)
      • 25. Tan, M., Pu, J., Zheng, B.: ‘Optimization of breast mass classification using sequential forward floating selection (SFFS) and a support vector machine (SVM) model’, Int. J. Comput. Assist. Radiol. Surg., 2014, 9, pp. 10051020.
    39. 39)
      • 38. Ramsey, F.L., Schafer, D.W.: ‘The statistical sleuth: a course in methods of data analysis’ (Duxbury Press, CA, 1997).
    40. 40)
      • 39. Duda, R.O., Hart, P.E., Stork, D.G.: ‘Pattern classification’ (Wiley-Interscience, 2001, 2nd edn.).
    41. 41)
      • 27. Bucia, I., Gacsadi, A.: ‘Directional features for automatic tumor classification of mammogram images’, Biomed. Signal Process. Control, 2011, 6, pp. 370378.
    42. 42)
      • 31. Do, M., Vetterli, M.: ‘The finite Ridgelet transform for image representation’, IEEE Trans. Image Process., 2003, 12, pp. 1628.
    43. 43)
      • 28. Eltouskhy, M.M., Faye, I., Samie, B.B.: ‘A statistical based feature extraction method for breast cancer diagnosis in digital mammogram using multiresolution representation’, Comput. Biol. Med., 2012, 42, pp. 123128.
    44. 44)
      • 44. Lesniak, J., Hupse, R., Kallenberg, M., et al: ‘Computer aided detection of breast masses in mammography using support vector machine classification’. Proc. SPIE 7963, Medical Imaging, 2011, vol. 7963, pp. 79631K79631K-7.
    45. 45)
      • 42. Bazzani, A., Bevilacqua, A., Bollini, D., et al: ‘An SVM classifier to separate false signals from microcalcifications in digital mammograms’, Phys. Med. Biol., 2001, 46, pp. 16511663.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cvi.2016.0163
Loading

Related content

content/journals/10.1049/iet-cvi.2016.0163
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading