access icon free Real-time calibration of space zoom cameras based on fixed stars

Compared with fixed focus cameras, zoom cameras can be used to provide more precise measurements in space tasks. However, the calibration of zoom cameras in this case is a difficulty, as it is not convenient to set up a calibration device on the spacecraft. To solve this problem, the authors present a real-time zoom camera calibration algorithm based on fixed stars. With the star images captured by the zoom camera, they firstly use a star identification method to recognise the identity of stars. By means a series of coordinate transformation, they are able to build the one-to-one mapping between the pixel coordinates and epoch celestial coordinates of the stars. Finally, the internal and external parameters of the zoom camera are obtained based on the thick lens zoom camera model. Simulation and experiment results show that the internal parameters of zoom cameras are rarely affected by the noise of latitude, longitude and time. Furthermore, the calibration precision and robustness of focal length reaches a satisfactory level.

Inspec keywords: real-time systems; calibration; aerospace instrumentation; cameras; object recognition; stars; space vehicles; image capture

Other keywords: longitude noise; pixel coordinates; focal length robustness; coordinate transformation; spacecraft; star identity recognition; star identification method; latitude noise; thick lens zoom camera model; real-time zoom camera calibration algorithm; epoch celestial coordinates; space zoom cameras; fixed stars; one-to-one mapping; star image capture; time noise

Subjects: Image recognition; Image sensors; Measurement standards and calibration; Aerospace engineering computing; Computer vision and image processing techniques; Aerospace instrumentation and equipment

References

    1. 1)
      • 6. Ma, J., Olsen, S.: ‘Depth from zooming’, J. Opt. Soc. Am. A Opt. Image Sci. Vis., 1990, 7, pp. 18831890.
    2. 2)
      • 2. Song, Y., Wang, F., Yang, H., et al: ‘Easy to calib: auto-calibration of camera from sequential IM-ages based on VP and EKF’. Innovative Computing Technology (INTECH), 2014 Fourth Int. Conf. on, Luton, 2014, pp. 4145.
    3. 3)
      • 26. Naiming, Q., Qi, X., Jian, G., et al: ‘Quadrilateral algorithm and date fusion method in star identification’. 2014 Int. Conf. on Mechatronics and Control, ICMC 2014, August 31, 2015, pp. 919923.
    4. 4)
      • 23. Luzum, B.: ‘Recent and anticipated changes to the international earth rotation and reference systems service (IERS) conventions’, Proc. of the Institute of Navigation, National Technical Meeting, 2009, 2, pp. 706710.
    5. 5)
      • 25. Lu, D., Qinqin, L., Yinrui, R., et al: ‘Space-time coordinate systems in the high-precision orbit prediction’, Adv. Astronaut. Sci., 2014, 152, pp. 13271341.
    6. 6)
      • 22. Gao, H., Luan, C., Chen, F., et al: ‘Calibration for zooming image shrink-amplify center’, Adv. Comput. Sci. Inf. Eng., 2012, 169, pp. 281286.
    7. 7)
      • 4. Wilde, M., Chua, Z.K., Fleischner, A.: ‘Effects of multivantage point systems on the teleoperation of space-craft docking’, IEEE Trans. Hum. Mach. Syst., 2014, 44, (2), pp. 200210.
    8. 8)
      • 18. Pal, M., Bhat, M.S.: ‘Star camera calibration combined with independent spacecraft attitude determination’. Proc. of the American Control Conf., 2009, pp. 48364841.
    9. 9)
      • 14. Seidelmann, P.K.: ‘International celestial reference system’, Adv. Astronaut. Sci., 1998, 99, (1), pp. 739745.
    10. 10)
      • 13. Horiuchi, S., Clark, J.E., Garcia-Miro, C., et al: ‘The all sky celestial reference frame at X/Ka-band (8.4/32 GHz)’. General Assembly and Scientific Symp. (URSI GASS), Beijing, 2014, pp. 11.
    11. 11)
      • 7. Lavest, J.M., Rives, G., Dhome, M.: ‘Three-dimensional reconstruction by zooming’, IEEE Trans. Robot. Autom., 1993, 9, pp. 196207.
    12. 12)
      • 12. Klaus, A., Bauer, J., Karner, K., et al: ‘Camera calibration from a single night sky image’. Computer Vision and Pattern Recognition, 2004 (CVPR 2004). Proc. of the 2004 IEEE Computer Society Conf. on, 2004, vol. 1, pp. I-151I-157.
    13. 13)
      • 15. Fey, A.L.: ‘The status and future of the International Celestial Reference Frame’, Int. Assoc. Geodesy Symp., 2007, 130, pp. 603609.
    14. 14)
      • 24. Bretagnon, P., Brumberg, V.A.: ‘On transformation between Int. celestial and terrestrial reference systems’, Astron. Astrophys., 2003, 408, (1), pp. 387400.
    15. 15)
      • 1. Zhang, Y., Cong, M., Hao, S., et al: ‘On-orbit calibration data-processing technologies for the space-based infrared camera’, IEEE Trans. Geosci. Remote Sens., 2015, 53, (12), pp. 63726384.
    16. 16)
      • 16. Griffith, D.T., Singla, P., Junkins, J.L.: ‘Autonomous on-orbit calibration approaches for star tracker cameras’, Adv. Astronaut. Sci., 2002, 112, pp. 3957.
    17. 17)
      • 11. Lavest, J.M., Delherm, C., Peuchot, B., et al: ‘Implicit reconstruction by zooming’, Comput. Vis. Image Und., 1997, 66, pp. 301315.
    18. 18)
      • 21. Alvarez, L., Gómez, L., Henríquez, P.: ‘Zoom dependent lens distortion mathematical models’, J. Math. Imaging Vis., 2012, 44, (3), p. 480.
    19. 19)
      • 17. Singla, P., Griffith, D.T., Crassidis, J.L., et al: ‘Attitude determination and autonomous on-orbit calibration of star tracker for the gifts mission’, Adv. Astronaut. Sci., 2002, 112, pp. 1938.
    20. 20)
      • 8. Lavest, J.M., Rives, G., Dhome, M.: ‘Modeling an object of revolution by zooming’, IEEE Trans. Robot. Autom., 1995, 11, pp. 267271.
    21. 21)
      • 9. Delherm, C., Lavest, J.M., Dhome, M., et al: ‘Dense reconstruction by zooming’, 4th European Conf. on Computer Vision, Cambridge, UK, 1996, 1065, pp. 427438.
    22. 22)
      • 20. Sarkis, M.S., C.T. Diepold, K.: ‘Calibrating an automatic zoom camera with moving least squares’, IEEE Trans. Autom. Sci. Eng., 2009, 6, pp. 492503.
    23. 23)
      • 19. Pal, M., Bhat, M.S.: ‘Autonomous star camera calibration and spacecraft attitude determination’, J. Intell. Robot. Syst., Theory Appl., 2014, 79, (2), pp. 323343.
    24. 24)
      • 10. Li, M., Lavest, J.M.: ‘Some aspects of zoom lens camera calibration’, IEEE Trans. Pattern Anal. Mach. Intell., 1996, 18, pp. 11051110.
    25. 25)
      • 5. Zhang, Y., Zheng, M., Xiong, X., et al: ‘Multistrip bundle block adjustment of ZY-3 satellite imagery by rigorous sensor model without ground control point’, IEEE Geosci. Remote Sens. Lett., 2015, 12, (4), pp. 865869.
    26. 26)
      • 3. Xie, J., Tang, H., Dou, X., et al: ‘On-orbit calibration of domestic APS star tracker’. Earth Observation and Remote Sensing Applications (EORSA), 2014 3rd Int. Workshop on, Changsha, 2014, pp. 239242.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cvi.2016.0145
Loading

Related content

content/journals/10.1049/iet-cvi.2016.0145
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading