http://iet.metastore.ingenta.com
1887

Class-wise two-dimensional PCA method for face recognition

Class-wise two-dimensional PCA method for face recognition

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Computer Vision — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Interests in biometric identification systems have led to many face recognition task-oriented studies. These studies often address the detection of face images taken from a camera and the recognition of faces via extracted meaningful features. To meet the requirement of defining data with fewer features, principal component analysis (PCA)-based techniques are widely used due to their efficiency and simplicity. There is a remarkable interest in the used efficiency of PCA by extending this traditional technique with various aspects. From this viewpoint, this study is specifically focused on the PCA-based face recognition techniques. By enhancing the methods in the reviewed studies, a novel class-wise two-dimensional PCA-based face recognition algorithm is presented in this study. Unlike the traditional method, this method generates more than one subspace considering within-class scattering. A system based on the presented approach can successively detect and recognise faces in not only images but also in video files. In addition, analyses were conducted to evaluate the efficiency of the proposed algorithm and its extension comparing with other addressed PCA-based methods. On the basis of the experimental results, it is clear to say that the presented approach and its extension are superior to the compared PCA-based algorithms.

References

    1. 1)
      • A.F. Abate , M. Nappi , D. Riccio .
        1. Abate, A.F., Nappi, M., Riccio, D., et al: ‘2D and 3D face recognition: a survey’, Pattern Recognit. Lett., 2007, 28, pp. 18851906.
        . Pattern Recognit. Lett. , 1885 - 1906
    2. 2)
      • A.M. Patil , S.R. Kolhe , P.M. Patil .
        2. Patil, A.M., Kolhe, S.R., Patil, P.M.: ‘2D face recognition techniques: a survey’, Int. J. Mach. Intell., 2010, 2, (1), pp. 7483.
        . Int. J. Mach. Intell. , 1 , 74 - 83
    3. 3)
      • L. Sirovich , M. Kirby .
        3. Sirovich, L., Kirby, M.: ‘Low-dimensional procedure for the characterization of human faces’, J. Opt. Soc. Am. A, 1987, 4, pp. 519524.
        . J. Opt. Soc. Am. A , 519 - 524
    4. 4)
      • M. Kirby , L. Sirovich .
        4. Kirby, M., Sirovich, L.: ‘Application of the Karhunen–Loeve procedure for the characterization of human faces’, IEEE Trans. Pattern Anal. Mach. Intell., 1990, 12, pp. 103108.
        . IEEE Trans. Pattern Anal. Mach. Intell. , 103 - 108
    5. 5)
      • M. Turk , A. Pentland .
        5. Turk, M., Pentland, A.: ‘Eigenfaces for recognition’, J. Cogn. Neurosci., 1991, 3, (1), pp. 7186.
        . J. Cogn. Neurosci. , 1 , 71 - 86
    6. 6)
      • R. Gottumukkal , V.K. Asari .
        6. Gottumukkal, R., Asari, V.K.: ‘An improved face recognition technique based on modular PCA approach’, Pattern Recognit. Lett., 2004, 25, (4), pp. 429436.
        . Pattern Recognit. Lett. , 4 , 429 - 436
    7. 7)
      • J. Yang , D. Zhang , A.F. Frangi .
        7. Yang, J., Zhang, D., Frangi, A.F., et al: ‘Two-dimensional PCA: a new approach to appearance-based face representation and recognition’, IEEE Trans. Pattern Anal. Mach. Intell., 2004, 26, (1), pp. 131137.
        . IEEE Trans. Pattern Anal. Mach. Intell. , 1 , 131 - 137
    8. 8)
      • L. Wang , X. Wang , X. Zhang .
        8. Wang, L., Wang, X., Zhang, X., et al: ‘The equivalence of two-dimensional PCA to line-based PCA’, Pattern Recognit. Lett., 2005, 26, (1), pp. 5760.
        . Pattern Recognit. Lett. , 1 , 57 - 60
    9. 9)
      • D. Zhang , Z.-H. Zhou .
        9. Zhang, D., Zhou, Z.-H.: ‘(2D)2PCA: 2-directional 2-dimensional PCA for efficient face representation and recognition’, Neurocomputing, 2005, 69, (1–3), pp. 224231.
        . Neurocomputing , 224 - 231
    10. 10)
      • W. Zuo , D. Zhang , K. Wang .
        10. Zuo, W., Zhang, D., Wang, K.: ‘Bidirectional PCA with assembled matrix distance metric for image recognition’, IEEE Trans. Syst. Man Cybern. B, Cybern., 2006, 36, pp. 863872.
        . IEEE Trans. Syst. Man Cybern. B, Cybern. , 863 - 872
    11. 11)
      • A. Mashhoori , M.Z. Jahromi .
        11. Mashhoori, A., Jahromi, M.Z.: ‘Block-wise two-directional 2DPCA with ensemble learning for face recognition’, Neurocomputing, 2013, 108, pp. 111117.
        . Neurocomputing , 111 - 117
    12. 12)
      • M. Safayani , M. Manzuri Shalmani , M. Khademi .
        12. Safayani, M., Manzuri Shalmani, M., Khademi, M.: ‘Extended two-dimensional PCA for efficient face representation and recognition’. 2008 Fourth Int. Conf. on Intelligent Computer Communication and Processing, 2008, pp. 295298.
        . 2008 Fourth Int. Conf. on Intelligent Computer Communication and Processing , 295 - 298
    13. 13)
      • S. Nedevschi , I. Peter .
        13. Nedevschi, S., Peter, I.: ‘An improved PCA type algorithm applied in face recognition’. 2010 IEEE Int. Conf. on Proc. Intelligent Computer Communication and Processing (ICCP), 2010, pp. 259262.
        . 2010 IEEE Int. Conf. on Proc. Intelligent Computer Communication and Processing (ICCP) , 259 - 262
    14. 14)
      • Q. Yang , X. Ding .
        14. Yang, Q., Ding, X.: ‘Symmetrical PCA in face recognition’. Proc. IEEE Int. Conf. on Image Processing (ICIP'02), vol. 2, 2002, pp. 97100.
        . Proc. IEEE Int. Conf. on Image Processing (ICIP'02) , 97 - 100
    15. 15)
      • M. Ding , C. Lu , Y. Lin .
        15. Ding, M., Lu, C., Lin, Y., et al: ‘Symmetry based two-dimensional principal component analysis for face recognition’, Adv. Neural Netw. ISNN 2007, 2007, 4492, pp. 10481055.
        . Adv. Neural Netw. ISNN 2007 , 1048 - 1055
    16. 16)
      • M. Vasilescu , D. Terzopoulos .
        16. Vasilescu, M., Terzopoulos, D.: ‘Multilinear image analysis for facial recognition’. Proc. Int. Conf. on Pattern Recognition (ICPR'02), IEEE Computer Society, vol. 2, 2002, pp. 511514.
        . Proc. Int. Conf. on Pattern Recognition (ICPR'02), IEEE Computer Society , 511 - 514
    17. 17)
      • D. Cai , X. He , J. Han . (2005)
        17. Cai, D., He, X., Han, J.: ‘Subspace learning based on tensor analysis’. 2005.
        .
    18. 18)
      • G. Quanxue , L. Yiying , L. Yamin .
        18. Quanxue, G., Yiying, L., Yamin, L., et al: ‘Directional principal component analysis for image matrix’. Proc. Int. Conf. on Computational Aspects of Social Networks, September 2010, pp. 374377.
        . Proc. Int. Conf. on Computational Aspects of Social Networks , 374 - 377
    19. 19)
      • D. Zhang , Z.-H. Zhou , S. Chen .
        19. Zhang, D., Zhou, Z.-H., Chen, S.: ‘Diagonal principal component analysis for face recognition’, Pattern Recognit., 2006, 39, (1), pp. 140142.
        . Pattern Recognit. , 1 , 140 - 142
    20. 20)
      • A.P. Kumar , S. Das , V. Kamakoti .
        20. Kumar, A.P., Das, S., Kamakoti, V.: ‘Face recognition using weighted modular principle component analysis’. Proc. 11th Int. Conf. Neural Information Processing (ICONIP 2004), 2004, pp. 362367.
        . Proc. 11th Int. Conf. Neural Information Processing (ICONIP 2004) , 362 - 367
    21. 21)
      • B. Scholkopf , A. Smola , K.R. Muller .
        21. Scholkopf, B., Smola, A., Muller, K.R.: ‘Nonlinear component analysis as a kernel eigenvalue problem’, Neural Comput., 1998, 10, (5), pp. 12991319.
        . Neural Comput. , 5 , 1299 - 1319
    22. 22)
      • M. Yang , N. Ahuja , D. Kriegman .
        22. Yang, M., Ahuja, N., Kriegman, D.: ‘Face recognition using kernel eigenfaces’. Proc. Int. Conf. on Image Processing, 2000, pp. 3740.
        . Proc. Int. Conf. on Image Processing , 37 - 40
    23. 23)
      • V.D.M. Nhat , S. Lee .
        23. Nhat, V.D.M., Lee, S.: ‘Kernel-based 2DPCA for face recognition’. Proc. IEEE Int. Symp. on Signal Processing and Information Technology, December 2007, pp. 3539.
        . Proc. IEEE Int. Symp. on Signal Processing and Information Technology , 35 - 39
    24. 24)
      • S. Ozawa , Y. Takeuchi , S. Abe .
        24. Ozawa, S., Takeuchi, Y., Abe, S.: ‘A fast incremental kernel principal component analysis for online feature extraction’. Proc. Pacific Rim Int. Conf. on Artificial Intelligence, 2010, pp. 487497.
        . Proc. Pacific Rim Int. Conf. on Artificial Intelligence , 487 - 497
    25. 25)
      • Y. Choi , S. Ozawa , M. Lee .
        25. Choi, Y., Ozawa, S., Lee, M.: ‘Incremental two-dimensional kernel principal component analysis’, Neurocomputing, 2014, 134, pp. 280288.
        . Neurocomputing , 280 - 288
    26. 26)
      • W. Yang , C. Sun , L. Zhang .
        26. Yang, W., Sun, C., Zhang, L., et al: ‘Laplacian bidirectional PCA for face recognition’, Neurocomputing, 2010, 74, (1), pp. 487493.
        . Neurocomputing , 1 , 487 - 493
    27. 27)
      • X. Li , Y. Pang , Y. Yuan .
        27. Li, X., Pang, Y., Yuan, Y.: ‘L1-norm-based 2DPCA’, IEEE Trans. Syst. Man Cybern. B, Cybern.: Publ. IEEE Syst. Man Cybern. Soc., 2010, 40, (4), pp. 11701175.
        . IEEE Trans. Syst. Man Cybern. B, Cybern.: Publ. IEEE Syst. Man Cybern. Soc. , 4 , 1170 - 1175
    28. 28)
      • Q. Ke , T. Kanade .
        28. Ke, Q., Kanade, T.: ‘Robust L1 norm factorization in the presence of outliers and missing data by alternative convex programming’. Proc. 2005 IEEE Computer Society Conf. on Computer Vision and Pattern Recognition (CVPR'05), vol. 1, 2005, pp. 739746.
        . Proc. 2005 IEEE Computer Society Conf. on Computer Vision and Pattern Recognition (CVPR'05) , 739 - 746
    29. 29)
      • N. Kwak .
        29. Kwak, N.: ‘Principal component analysis based on L1-norm maximization’, IEEE Trans. Pattern Anal. Mach. Intell., 2008, 30, (9), pp. 16721680.
        . IEEE Trans. Pattern Anal. Mach. Intell. , 9 , 1672 - 1680
    30. 30)
      • H. Wang , J. Wang .
        30. Wang, H., Wang, J.: ‘2DPCA with L1-norm for simultaneously robust and sparse modelling’, Neural Netw., 2013, 46, pp. 190198.
        . Neural Netw. , 190 - 198
    31. 31)
      • Ü.Ç. Turhal , A. Duysak .
        31. Turhal, Ü.Ç., Duysak, A.: ‘Cross grouping strategy based 2DPCA method for face recognition’, Appl. Soft Comput., 2015, 29, pp. 270279.
        . Appl. Soft Comput. , 270 - 279
    32. 32)
      • K. Cui , Q. Gao , H. Zhang .
        32. Cui, K., Gao, Q., Zhang, H., et al: ‘Merging model-based two-dimensional principal component analysis’, Neurocomputing, 2015, 168, pp. 11981206.
        . Neurocomputing , 1198 - 1206
    33. 33)
      • S. Haifeng , C. Guangsheng , W. Hairong .
        33. Haifeng, S., Guangsheng, C., Hairong, W., et al: ‘The improved (2D)2 PCA algorithm and its parallel implementation based on image block’, Microprocess. Microsyst., 2016, 47, pp. 170177.
        . Microprocess. Microsyst. , 170 - 177
    34. 34)
      • P. Viola , M.J. Jones .
        34. Viola, P., Jones, M.J.: ‘Robust real-time face detection’, Int. J. Comput. Vis., 2004, 57, (2), pp. 137154.
        . Int. J. Comput. Vis. , 2 , 137 - 154
    35. 35)
      • S.M. Pizer , E.P. Amburn , J.D. Austin .
        35. Pizer, S.M., Amburn, E.P., Austin, J.D., et al: ‘Adaptive histogram equalization and its variations’, Comput. Vis. Graph. Image Process., 1987, 39, pp. 355368.
        . Comput. Vis. Graph. Image Process. , 355 - 368
    36. 36)
      • P.N. Belhumeur , J.P. Hespanha , D.J. Kriegman .
        36. Belhumeur, P.N., Hespanha, J.P., Kriegman, D.J.: ‘Eigenfaces vs. fisherfaces: recognition using class specific linear projection’, IEEE Trans. Pattern Anal. Mach. Intell., 1997, 19, (7), pp. 711720.
        . IEEE Trans. Pattern Anal. Mach. Intell. , 7 , 711 - 720
    37. 37)
      • F.S. Samaria , A.C. Harter .
        37. Samaria, F.S., Harter, A.C.: ‘Parameterisation of a stochastic model for human face identification’. Proc. of the Second IEEE Workshop on Proc. Applications of Computer Vision, 1994, 1994, pp. 138142.
        . Proc. of the Second IEEE Workshop on Proc. Applications of Computer Vision, 1994 , 138 - 142
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cvi.2016.0135
Loading

Related content

content/journals/10.1049/iet-cvi.2016.0135
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address