http://iet.metastore.ingenta.com
1887

Salient object detection via sparse representation and multi-layer contour zooming

Salient object detection via sparse representation and multi-layer contour zooming

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Computer Vision — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Since image background is normally composed of congenial regions, it can be represented by a feature dictionary via sparse representation. Based on this theory, the authors propose a novel bottom-up saliency detection method that unites the syncretic merits of sparse representation and multi-hierarchical layers. In contrast to most pre-existing sparse-based approaches that only highlight the boundaries of a target, the proposed method highlights the entire object even if it is large. Given a source image, a multi-scale background dictionary is structured with the features form different layers. Each region of the image is then reconstructed by the dictionary to compute its reconstruction error as a saliency score. Although a reconstruction map can be generated by the saliency scores, it is not good enough to be the final result because of low resolution and high error detection rates. Therefore, in middle cue, they propose a multi-scale contour zooming approach to address the error detection across the hierarchical layers. To improve the resolution of the final detection, a pixel-level rectification based on the Bayesian observation likelihood is calculated as the bottom cue. Combining sparse representation and multi-scale correction, the precision of the final saliency map is significantly improved for the detection results.

References

    1. 1)
      • C. Lang , J. Feng , G. Liu .
        1. Lang, C., Feng, J., Liu, G., et al: ‘Improving bottom-up saliency detection by looking into neighbors’, Circuits Syst. Video Technol., 2013, 23, (6), pp. 10161028.
        . Circuits Syst. Video Technol. , 6 , 1016 - 1028
    2. 2)
      • A. Borji , M.M. Cheng , H. Jiang .
        2. Borji, A., Cheng, M.M., Jiang, H., et al: ‘Salient object detection: a benchmark’, Trans. Image Process., 2015, 24, (12), pp. 57065722.
        . Trans. Image Process. , 12 , 5706 - 5722
    3. 3)
      • L. Itti , C. Koch , E. Niebur .
        3. Itti, L., Koch, C., Niebur, E.: ‘A model of saliency-based visual attention for rapid scene analysis’, IEEE Trans. Pattern Anal. Mach. Intell., 1998, 20, (11), pp. 12541259.
        . IEEE Trans. Pattern Anal. Mach. Intell. , 11 , 1254 - 1259
    4. 4)
      • Z. Lai , W.K. Wong , Y. Xu .
        4. Lai, Z., Wong, W.K., Xu, Y., et al: ‘Approximate orthogonal sparse embedding for dimensionality reduction’, IEEE Trans. Neural Netw. Learn. Syst., 2015, 27, (4), pp. 723735.
        . IEEE Trans. Neural Netw. Learn. Syst. , 4 , 723 - 735
    5. 5)
      • Z. Lai , Y. Xu , Q. Chen .
        5. Lai, Z., Xu, Y., Chen, Q., et al: ‘Multilinear sparse principal component analysis’, IEEE Trans. Neural Netw. Learn. Syst., 2014, 25, (10), pp. 19421950.
        . IEEE Trans. Neural Netw. Learn. Syst. , 10 , 1942 - 1950
    6. 6)
      • Z. Lai , W.K. Wong , Y. Xu .
        6. Lai, Z., Wong, W.K., Xu, Y., et al: ‘Sparse alignment for robust tensor learning’, IEEE Trans. Neural Netw. Learn. Syst., 2014, 25, (10), pp. 17791792.
        . IEEE Trans. Neural Netw. Learn. Syst. , 10 , 1779 - 1792
    7. 7)
      • X. Shen , Y. Wu .
        7. Shen, X., Wu, Y.: ‘A unified approach to salient object detection via low rank matrix recovery’. Computer Vision and Pattern Recognition (CVPR), Providence, RI, USA, June 2012, pp. 853860.
        . Computer Vision and Pattern Recognition (CVPR) , 853 - 860
    8. 8)
      • H.M. Chau , R. Deepu .
        8. Chau, H.M., Deepu, R.: ‘Sparse likelihood saliency detection’. Conf. on Acoustics, Speech, and Signal Processing (ICASSP), Kyoto, March 2012, pp. 897900.
        . Conf. on Acoustics, Speech, and Signal Processing (ICASSP) , 897 - 900
    9. 9)
      • L. Zhang , S. Zhao , W. Liu .
        9. Zhang, L., Zhao, S., Liu, W., et al: ‘Saliency detection via sparse reconstruction and joint label inference in multiple features’, Neurocomputing, 2015, 155, pp. 111.
        . Neurocomputing , 1 - 11
    10. 10)
      • X. Li , H. Lu , L. Zhang .
        10. Li, X., Lu, H., Zhang, L., et al: ‘Saliency detection via dense and sparse reconstruction’. Int. Conf. on Computer Vision (ICCV), Sydney, NSW, December 2013, pp. 29762983.
        . Int. Conf. on Computer Vision (ICCV) , 2976 - 2983
    11. 11)
      • S. Yuna , D.Y. Chang .
        11. Yuna, S., Chang, D.Y.: ‘Salient object detection based on sparse representation with image-specific prior’. Int. Symp. on Consumer Electronics (ISCE), JeJu Island, June 2014, pp. 12.
        . Int. Symp. on Consumer Electronics (ISCE) , 1 - 2
    12. 12)
      • U.S. Thakur , O. Chubach .
        12. Thakur, U.S., Chubach, O.: ‘Texture analysis and synthesis using steerable pyramid decomposition for video coding’. Int. Conf. on Systems, Signals and Image Processing (IWSSIP), London, September 2015, pp. 204207.
        . Int. Conf. on Systems, Signals and Image Processing (IWSSIP) , 204 - 207
    13. 13)
      • F. Shaker , A. Monadjemi .
        13. Shaker, F., Monadjemi, A.: ‘A new symmetry measure based on Gabor filters’. Iranian Conf. on Electrical Engineering (ICEE), Tehran, May 2015, pp. 705710.
        . Iranian Conf. on Electrical Engineering (ICEE) , 705 - 710
    14. 14)
      • B. Olshausen , D. Field .
        14. Olshausen, B., Field, D.: ‘Emergence of simple-cell receptive field properties by learning a sparse code for natural images’, Nature, 1996, 381, pp. 607609.
        . Nature , 607 - 609
    15. 15)
      • H.Y. Gao , K.M. Lam .
        15. Gao, H.Y., Lam, K.M.: ‘Salient object detection using octonion with Bayesian inference’. Int. Conf. on Image Processing (ICIP), Paris, October 2014, pp. 32923296.
        . Int. Conf. on Image Processing (ICIP) , 3292 - 3296
    16. 16)
      • R. Achanta , A. Shaji , K. Smith . (2010)
        16. Achanta, R., Shaji, A., Smith, K., et al: ‘Slic superpixels’ (EPFL, 2010).
        .
    17. 17)
      • Q. Yan , L. Xu , J. Shi .
        17. Yan, Q., Xu, L., Shi, J., et al: ‘Hierarchical saliency detection’. Computer Vision and Pattern Recognition (CVPR), Portland, OR, June 2013, pp. 11551162.
        . Computer Vision and Pattern Recognition (CVPR) , 1155 - 1162
    18. 18)
      • C. Zhao , C. Liu , Z. Lai .
        18. Zhao, C., Liu, C., Lai, Z., et al: ‘Sparse embedding visual attention system combined with edge information’, AEU-IJEC, 2011, 65, (12), pp. 10611068.
        . AEU-IJEC , 12 , 1061 - 1068
    19. 19)
      • M.M. Cheng , N.J. Mitra , X. Huang , P.H. Torr .
        19. Cheng, M.M., Mitra, N.J., Huang, X., Torr, P.H., et al: ‘Global contrast based salient region detection’, IEEE Trans. Pattern Anal. Mach. Intell., 2015, 37, (3), pp. 569582.
        . IEEE Trans. Pattern Anal. Mach. Intell. , 3 , 569 - 582
    20. 20)
      • B. Jiang , L. Zhang , H. Lu .
        20. Jiang, B., Zhang, L., Lu, H., et al: ‘Saliency detection via absorbing Markov chain’. Int. Conf. on Computer Vision (ICCV), Sydney, NSW, December 2013, pp. 16651672.
        . Int. Conf. on Computer Vision (ICCV) , 1665 - 1672
    21. 21)
      • J.S. Kim , J.Y. Sim , C.S. Kim .
        21. Kim, J.S., Sim, J.Y., Kim, C.S.: ‘Multi scale saliency detection using random walk with restart’, IEEE Trans. Circuits Syst. Video Technol., 2014, 24, (2), pp. 198210.
        . IEEE Trans. Circuits Syst. Video Technol. , 2 , 198 - 210
    22. 22)
      • J. Sun , H. Lu , X. Liu .
        22. Sun, J., Lu, H., Liu, X.: ‘Saliency region detection based on Markov absorption probabilities’, Trans. Image Process, 2015, 24, (5), pp. 16391649.
        . Trans. Image Process , 5 , 1639 - 1649
    23. 23)
      • R. Ksantini , B. Boufama , S. Memar .
        23. Ksantini, R., Boufama, B., Memar, S.: ‘A new efficient active contour model without local initializations for salient object detection’, J. Image Video Process., 2013, 2013, (1), pp. 16875281.
        . J. Image Video Process. , 1 , 1687 - 5281
    24. 24)
      • H.Y. Gao , K.M. Lam .
        24. Gao, H.Y., Lam, K.M.: ‘Salient object detection using octonion with Bayesian inference’. Int. Conf. on Image Processing (ICIP), Paris, October 2014, pp. 32823286.
        . Int. Conf. on Image Processing (ICIP) , 3282 - 3286
    25. 25)
      • J. Wang , H. Lu , X. Li .
        25. Wang, J., Lu, H., Li, X., et al: ‘Saliency detection via background and foreground seed selection’, Neurocomputing, 2015, 152, (25), pp. 359368.
        . Neurocomputing , 25 , 359 - 368
    26. 26)
      • Z. Wang , B. Li .
        26. Wang, Z., Li, B.: ‘A two-stage approach to saliency detection in images’. Conf. on Acoustics, Speech, and Signal Processing (ICASSP), Las Vegas, NV, March 2008, pp. 965968.
        . Conf. on Acoustics, Speech, and Signal Processing (ICASSP) , 965 - 968
    27. 27)
      • R. Achanta , S. Hemami , F. Estrada .
        27. Achanta, R., Hemami, S., Estrada, F., et al: ‘Frequency-tuned salient region detection’. Computer Vision and Pattern Recognition (CVPR), Miami, FL, June 2009, pp. 15971604.
        . Computer Vision and Pattern Recognition (CVPR) , 1597 - 1604
    28. 28)
      • Y.Q. Shi , L. Xu , J. Jia .
        28. Shi, Y.Q., Xu, L., Jia, J.: ‘Hierarchical image saliency detection on extended CSSD’, Trans. Pattern Anal. Mach. Intell., 2016, 38, (4), pp. 717729.
        . Trans. Pattern Anal. Mach. Intell. , 4 , 717 - 729
    29. 29)
      • X. Hou , L. Zhang .
        29. Hou, X., Zhang, L.: ‘Saliency detection: A spectral residual approach’. Computer Vision and Pattern Recognition (CVPR), Minneapolis, MN, USA, June 2007, pp. 18.
        . Computer Vision and Pattern Recognition (CVPR) , 1 - 8
    30. 30)
      • H.R. Tavakoli , E. Rahtu , J. Heikkila .
        30. Tavakoli, H.R., Rahtu, E., Heikkila, J.: ‘Fast and efficient saliency detection using sparse sampling and kernel density estimation’, SCIA, 2011, 6688, (2), pp. 666675.
        . SCIA , 2 , 666 - 675
    31. 31)
      • C. Yang , L. Zhang , H. Lu .
        31. Yang, C., Zhang, L., Lu, H.: ‘Graph-regularized saliency detection with convex-hull-based center prior’, SPL, 2013, 20, (7), pp. 637640.
        . SPL , 7 , 637 - 640
    32. 32)
      • N. Murray , M. Vanrell , X. Otazu .
        32. Murray, N., Vanrell, M., Otazu, X., et al: ‘Saliency estimation using a non-parametric low-level vision model’. Computer Vision and Pattern Recognition (CVPR), Colorado, Springs, June 2011, pp. 433440.
        . Computer Vision and Pattern Recognition (CVPR) , 433 - 440
    33. 33)
      • Y. Xie , H. Lu .
        33. Xie, Y., Lu, H.: ‘Visual saliency detection based on Bayesian model’. Int. Conf. on Image Processing (ICIP), Brussels, September 2011, pp. 645648.
        . Int. Conf. on Image Processing (ICIP) , 645 - 648
    34. 34)
      • H.J. Seo , P. Milanfar .
        34. Seo, H.J., Milanfar, P.: ‘Static and space-time visual saliency detection by self-resemblance’, J. Vis., 2009, 9, (12), pp. 127.
        . J. Vis. , 12 , 1 - 27
    35. 35)
      • L. Zhang , M.H. Tong , T.K. Marks .
        35. Zhang, L., Tong, M.H., Marks, T.K., et al: ‘Sun: a Bayesian framework for saliency using natural statistics’, J. Vis., 2008, 8, (7), pp. 120.
        . J. Vis. , 7 , 1 - 20
    36. 36)
      • M.M. Cheng , J. Warrell , W.Y. Lin .
        36. Cheng, M.M., Warrell, J., Lin, W.Y., et al: ‘Efficient salient region detection with soft image abstraction’. Int. Conf. on Computer Vision (ICCV), Sydney, VIC, December 2013, pp. 15291536.
        . Int. Conf. on Computer Vision (ICCV) , 1529 - 1536
    37. 37)
      • F. Perazzi , P. Krahenbuhl , Y. Pritch .
        37. Perazzi, F., Krahenbuhl, P., Pritch, Y., et al: ‘Saliency filters: contrast based filtering for salient region detection’. Computer Vision and Pattern Recognition (CVPR), Providence, RI, USA, June 2012, pp. 733740.
        . Computer Vision and Pattern Recognition (CVPR) , 733 - 740
    38. 38)
      • T. Chen , L. Lin , L. Liu .
        38. Chen, T., Lin, L., Liu, L., et al: ‘DISC: deep image saliency computing via progressive representation learning’. TNNLS, 2016, pp. 115.
        . TNNLS , 1 - 15
    39. 39)
      • X. Ma , X. Xie , K.M. Lam .
        39. Ma, X., Xie, X., Lam, K.M., et al: ‘Saliency detection based on singular value decomposition’, JVCI, 2015, 32, pp. 95106.
        . JVCI , 95 - 106
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cvi.2016.0123
Loading

Related content

content/journals/10.1049/iet-cvi.2016.0123
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address