http://iet.metastore.ingenta.com
1887

Online multi-person tracking with two-stage data association and online appearance model learning

Online multi-person tracking with two-stage data association and online appearance model learning

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Computer Vision — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

This study addresses the automatic multi-person tracking problem in complex scenes from a single, static, uncalibrated camera. In contrast with offline tracking approaches, a novel online multi-person tracking method is proposed based on a sequential tracking-by-detection framework, which can be applied to real-time applications. A two-stage data association is first developed to handle the drifting targets stemming from occlusions and people's abrupt motion changes. Subsequently, a novel online appearance learning is developed by using the incremental/decremental support vector machine with an adaptive training sample collection strategy to ensure reliable data association and rapid learning. Experimental results show the effectiveness and robustness of the proposed method while demonstrating its compatibility with real-time applications.

References

    1. 1)
      • P. Dollar , R. Appel , S. Belongie .
        1. Dollar, P., Appel, R., Belongie, S., et al: ‘Fast feature pyramids for object detection’, IEEE Trans. Pattern Anal. Mach. Intell., 2014, 36, (8), pp. 15321545.
        . IEEE Trans. Pattern Anal. Mach. Intell. , 8 , 1532 - 1545
    2. 2)
      • W. Ouyang , X. Zeng , X. Wang .
        2. Ouyang, W., Zeng, X., Wang, X.: ‘Single-pedestrian detection aided by 2-pedestrian detection’, IEEE Trans. Pattern Anal. Mach. Intell., 2014, 37, (9), pp. 18751889.
        . IEEE Trans. Pattern Anal. Mach. Intell. , 9 , 1875 - 1889
    3. 3)
      • J. Berclaz , F. Fleuret , E. Turetken .
        3. Berclaz, J., Fleuret, F., Turetken, E., et al: ‘Multiple object tracking using K-shortest paths optimization’, IEEE Trans. Pattern Anal. Mach. Intell., 2011, 33, (9), pp. 18061819.
        . IEEE Trans. Pattern Anal. Mach. Intell. , 9 , 1806 - 1819
    4. 4)
      • A. Andriyenko , S. Roth , K. Schindler .
        4. Andriyenko, A., Roth, S., Schindler, K.: ‘Continuous energy minimization for multitarget tracking’, IEEE Trans. Pattern Anal. Mach. Intell., 2014, 36, (1), pp. 5872.
        . IEEE Trans. Pattern Anal. Mach. Intell. , 1 , 58 - 72
    5. 5)
      • L. Leal-Taixe , G. Pons-Moll , B. Rosenhahn .
        5. Leal-Taixe, L., Pons-Moll, G., Rosenhahn, B.: ‘Everybody needs somebody: modeling social and grouping behavior on a linear programming multiple people tracker’. Proc. Int. Conf. on Computer Vision Workshops, Barcelona, Spain, November 2011, pp. 120127.
        . Proc. Int. Conf. on Computer Vision Workshops , 120 - 127
    6. 6)
      • C. Huang , B. Wu , R. Nevatia .
        6. Huang, C., Wu, B., Nevatia, R.: ‘Robust object tracking by hierarchical association of detection responses’. Proc. European Conf. on Computer Vision, Marseille, France, October 2008, pp. 788801.
        . Proc. European Conf. on Computer Vision , 788 - 801
    7. 7)
      • H. Pirsiavash , D. Ramanan , C.C. Fowlkes .
        7. Pirsiavash, H., Ramanan, D., Fowlkes, C.C.: ‘Globally-optimal greedy algorithms for tracking a variable number of objects’. Proc. Computer Vision and Pattern Recognition, Providence, USA, June 2011, pp. 12011208.
        . Proc. Computer Vision and Pattern Recognition , 1201 - 1208
    8. 8)
      • B. Yang , R. Nevatia .
        8. Yang, B., Nevatia, R.: ‘An online learned CRF model for multitarget tracking’. Proc. Computer Vision and Pattern Recognition, Providence, USA, June 2012, pp. 20342041.
        . Proc. Computer Vision and Pattern Recognition , 2034 - 2041
    9. 9)
      • B. Yang , R. Nevatia .
        9. Yang, B., Nevatia, R.: ‘Multi-target tracking by online learning of non-linear motion patterns and robust appearance models’. Proc. Computer Vision and Pattern Recognition, Providence, USA, June 2012, pp. 19181925.
        . Proc. Computer Vision and Pattern Recognition , 1918 - 1925
    10. 10)
      • W. Choi .
        10. Choi, W.: ‘Near-online multi-target tracking with aggregated local flow descriptor’. Proc. Int. Conf. on Computer Vision, Santiago, Chile, December 2015, pp. 30293037.
        . Proc. Int. Conf. on Computer Vision , 3029 - 3037
    11. 11)
      • J. Yang , Z. Shi , P. Vela .
        11. Yang, J., Shi, Z., Vela, P., et al: ‘Probabilistic multiple people tracking through complex situations’. Proc. Int. Workshop on Performance Evaluation of Tracking and Surveillance, Miami, USA, June 2009, pp. 7986.
        . Proc. Int. Workshop on Performance Evaluation of Tracking and Surveillance , 79 - 86
    12. 12)
      • M.D. Breitenstein , F. Reichlin , B. Leibe .
        12. Breitenstein, M.D., Reichlin, F., Leibe, B., et al: ‘Online multiperson tracking-by-detection from a single, uncalibrated camera’, IEEE Trans. Pattern Anal. Mach. Intell., 2011, 33, (9), pp. 18201833.
        . IEEE Trans. Pattern Anal. Mach. Intell. , 9 , 1820 - 1833
    13. 13)
      • S. Pellegrini , A. Ess , K. Schindler .
        13. Pellegrini, S., Ess, A., Schindler, K., et al: ‘You'll never walk alone: modeling social behavior for multitarget tracking’. Proc. Int. Conf. on Computer Vision, Kyoto, Japan, September 2009, pp. 261268.
        . Proc. Int. Conf. on Computer Vision , 261 - 268
    14. 14)
      • K. Yamaguchi , A. Berg , L. Ortiz .
        14. Yamaguchi, K., Berg, A., Ortiz, L., et al: ‘Who are you with and where are you going?’. Proc. Computer Vision and Pattern Recognition, Providence, USA, June 2011, pp. 13451352.
        . Proc. Computer Vision and Pattern Recognition , 1345 - 1352
    15. 15)
      • X. Yan , X. Wu , I. Kakadiaris .
        15. Yan, X., Wu, X., Kakadiaris, I., et al: ‘To track or to detect? An ensemble framework for optimal selection’. Proc. European Conf. on Computer Vision, Florence, Italy, October 2012, pp. 594607.
        . Proc. European Conf. on Computer Vision , 594 - 607
    16. 16)
      • J.H. Yoon , M.H. Yang , J. Lim .
        16. Yoon, J.H., Yang, M.H., Lim, J., et al: ‘Bayesian multi-object tracking using motion context from multiple objects’. Proc. Conf. on Applications of Computer Vision, Waikoloa, HI, January 2015, pp. 3340.
        . Proc. Conf. on Applications of Computer Vision , 33 - 40
    17. 17)
      • S.H. Bae , K.J. Yoon .
        17. Bae, S.H., Yoon, K.J.: ‘Robust online multi-object tracking based on tracklet confidence and online discriminative appearance learning’. Proc. Computer Vision and Pattern Recognition, Columbus, OH, June 2014, pp. 12181225.
        . Proc. Computer Vision and Pattern Recognition , 1218 - 1225
    18. 18)
      • H. Grabner , H. Bischof .
        18. Grabner, H., Bischof, H.: ‘On-line boosting and vision’. Proc. Computer Vision and Pattern Recognition, New York, USA, June 2006, pp. 260267.
        . Proc. Computer Vision and Pattern Recognition , 260 - 267
    19. 19)
      • G. Cauwenberghs , T. Poggio . (2001)
        19. Cauwenberghs, G., Poggio, T.: ‘Incremental and decremental support vector machine learning’, in Leen, Todd K., Dietterich, Thomas G., Tresp, Volker (Eds.): ‘Advances in neural information processing systems 13’ (MIT Press, Cambridge, MA, 2001), pp. 409415.
        .
    20. 20)
      • J. Platt . (1999)
        20. Platt, J.: ‘Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods’, in Smola, Alexander J., Bartlett, Peter, Schölkopf, Bernhard, Schuurmans, Dale (Eds.): ‘Advances in large margin classifiers’ (MIT Press, Cambridge, MA, 1999), pp. 6174.
        .
    21. 21)
      • 21. ‘PETS 2009 Dataset’. Available at http://www.cvg.reading.ac.uk/PETS2009/, accessed 2 November 2015.
        .
    22. 22)
      • 22. ‘Town-Centre Dataset’. Available at http://www.robots.ox.ac.uk/ActiveVision/Research/Projects/2009bbenfold_headpose/project.html, accessed 2 November 2015.
        .
    23. 23)
      • 23. ‘MOT Challenge Dataset’. Available at http://www.motchallenge.net/, accessed 9 January 2016.
        .
    24. 24)
      • B. Keni , S. Rainer .
        24. Keni, B., Rainer, S.: ‘Evaluating multiple object tracking performance: the CLEAR MOT metrics’, EURASIP J. Image Video Process., 2008, 2008, (1), pp. 110.
        . EURASIP J. Image Video Process. , 1 , 1 - 10
    25. 25)
      • Y. Li , C. Huang , R. Nevatia .
        25. Li, Y., Huang, C., Nevatia, R.: ‘Learning to associate: HybridBoosted multi-target tracker for crowded scene’. Proc. Computer Vision and Pattern Recognition, Miami, USA, June 2009, pp. 29532960.
        . Proc. Computer Vision and Pattern Recognition , 2953 - 2960
    26. 26)
      • C. Dicle , O. Camps , M. Sznaier .
        26. Dicle, C., Camps, O., Sznaier, M.: ‘The way they move: tracking multiple targets with similar appearance’. Proc. Int. Conf. on Computer Vision, Sydney, NSW, December 2013, pp. 23042311.
        . Proc. Int. Conf. on Computer Vision , 2304 - 2311
    27. 27)
      • A. Geiger , M. Lauer , C. Wojek .
        27. Geiger, A., Lauer, M., Wojek, C., et al: ‘3d traffic scene understanding from movable platforms’, IEEE Trans. Pattern Anal. Mach. Intell., 2013, 36, (5), pp. 10121025.
        . IEEE Trans. Pattern Anal. Mach. Intell. , 5 , 1012 - 1025
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cvi.2016.0068
Loading

Related content

content/journals/10.1049/iet-cvi.2016.0068
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address