Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Fitting-based optimisation for image visual salient object detection

To overcome some major problems with traditional saliency evaluation metrics, full-reference image quality assessment (IQA) metrics, which have similar but stricter objectives, are used. Inspired by the root mean absolute error, the authors propose a fitting-based optimisation method for salient object detection algorithms. Their algorithm analyses the quantitative relationship between saliency and ground truth values, and uses the derived relationship to fit the saliency values to the original saliency maps. This ensures that the resulting images, which are composed of fitted values, are closer to the ground truth. The proposed algorithm first computes the statistics of the ground truth and saliency maps computed by each salient object detection algorithm. These statistics are used to compute the parameters of four fitting models, which generally agree with the characteristics of the statistical data. For a new saliency map, they use the fitting model with the computed parameters to obtain the fitted saliency values, which are confined to the range [0, 255]. Finally, they evaluate their saliency optimisation algorithm using traditional evaluation metrics, IQA metrics, and a content-based image retrieval application. The results show that the proposed approach improves the quality of the optimised saliency maps.

References

    1. 1)
      • 2. Perazzi, F., Krahenbuhl, P., Pritch, Y., et al: ‘Saliency filters: contrast based filtering for salient region detection’. Proc. IEEE Conf. Computer Vision and Pattern Recognition, RI, USA, June 2012, pp. 733740.
    2. 2)
      • 4. Zhu, W., Liang, S., Wei, Y., et al: ‘Saliency optimization from robust background detection’. Proc. IEEE Conf. Computer Vision and Pattern Recognition, OH, USA, June 2014, pp. 28142821.
    3. 3)
      • 16. Egiazarian, K., Astola, J., Ponomarenko, N., et al: ‘New full-reference quality metrics based on HVS’. Proc. Int. Workshop on Video Processing and Quality Metrics, Scottsdale, USA, 2006.
    4. 4)
      • 12. Jiang, B., Zhang, L., Lu, H., et al: ‘Saliency detection via absorbing Markov chain’. Proc. IEEE Int. Conf. Computer Vision, Sydney, Australia, December 2013, pp. 16651672.
    5. 5)
      • 14. Wei, Y., Wen, F., Zhu, W., et al: ‘Geodesic saliency using background priors’. Proc. IEEE European Conf. Computer Vision, Firenze, Italy, October 2012, pp. 2942.
    6. 6)
      • 10. Chang, K., Liu, T., Chen, H., et al: ‘Fusing generic objectness and visual saliency for salient object detection’. Proc. IEEE Int. Conf. Computer Vision, Barcelona, Spain, November 2011, pp. 414429.
    7. 7)
      • 21. Wang, Z., Simoncelli, E.P., Bovik, A.C.: ‘Multi-scale structural similarity for image quality assessment’. Proc. IEEE ACSSC, Pacific Grove, CA, November 2004, pp. 0912.
    8. 8)
      • 6. Wei, Y., Wen, F., Zhu, W., et al: ‘Hierarchical saliency detection’. Proc. IEEE Conf. Computer Vision and Pattern Recognition, Washington, DC, USA, June 2013, pp. 11551162.
    9. 9)
      • 15. Mitsa, T., Varkur, K.L.: ‘Evaluation of contrast sensitivity functions for the formulation of quality measures incorporated in half toning algorithms’. Proc. IEEE Int. Conf. ASSP, Minneapolis, MN, April 1993, pp. 301304.
    10. 10)
      • 26. Shen, X., Wu, Y.: ‘A unified approach to salient object detection via low rank matrix recovery’. Proc. IEEE Conf. Computer Vision and Pattern Recognition, RI, USA, June 2012, pp. 853860.
    11. 11)
      • 7. Margolin, R., Tal, A., Zelnik-Manor, L.: ‘What makes a patch distinct?’. Proc. IEEE Conf. Computer Vision and Pattern Recognition, Washington, DC, USA, June 2013, pp. 11391146.
    12. 12)
      • 5. Cheng, M.M., Zhang, G.X., Mitra, N.J., et al: ‘Global contrast based salient region detection’. Proc. IEEE Conf. Computer Vision and Pattern Recognition, June 2011, pp. 409416.
    13. 13)
      • 11. Jiang, H., Zheng, N., Yuan, Z., et al: ‘Automatic salient object segmentation based on context and shape prior’. British Machine Vision Conf., Dundee, UK, September 2011, pp. 112.
    14. 14)
      • 9. Kim, J., Han, D., Tai, Y., et al: ‘Salient region detection via high-dimensional color transform’. Proc. IEEE Conf. Computer Vision and Pattern Recognition, OH, USA, June 2014, pp. 883890.
    15. 15)
      • 18. Ponomarenko, N., Eremeev, O., Lukin, V., et al: ‘Modified image visual quality metrics for contrast change and mean shift accounting’. CAD Systems in Microelectronics, 2011, pp. 305311.
    16. 16)
      • 20. Larson, E.C., Chandler, D.M.: ‘Most apparent distortion: full-reference image quality assessment and the role of strategy’, J. Electron. Imaging, 2010, 19, (1), pp. 121.
    17. 17)
      • 22. Sheikh, H.R., Bovik, A.C.: ‘Image information and visual quality’, IEEE Trans. Image Process., 2006, 15, (2), pp. 430444.
    18. 18)
      • 17. Ponomarenko, N., Silvestri, F., Egiazarian, K., et al: ‘On between-coefficient contrast masking of DCT basis functions’. Proc. Int. Workshop on Video Processing and Quality Metrics, Scottsdale, USA, 2007, pp. 2526.
    19. 19)
      • 24. Achanta, R., Hemami, S., Estrada, F., et al: ‘Frequency-tuned salient region detection’. Proc. IEEE Conf. Computer Vision and Pattern Recognition, Miami, FL, USA, June 2009, pp. 15971604.
    20. 20)
      • 3. Peng, H., Li, B., Ling, H., et al: ‘Salient object detection via structured matrix decomposition’. AAAI Conf. Artificial Intelligence, Palo Alto, USA, July 2013, pp. 114.
    21. 21)
      • 23. Sheikh, H.R., Sabir, M.F., Bovik, A.C.: ‘A statistical evaluation of recent full reference image quality assessment algorithms’, IEEE Trans. Image Process, 2006, 15, (11), pp. 34403451.
    22. 22)
      • 1. Margolin, R., Zelnik-Manor, L., Tal, A.: ‘How to evaluate foreground maps’. Proc. IEEE Conf. Computer Vision and Pattern Recognition, OH, USA, June 2014, pp. 248255.
    23. 23)
      • 13. Yang, C., Zhang, L., Lu, H., et al: ‘Saliency detection via graph-based manifold ranking’. Proc. IEEE Conf. Computer Vision and Pattern Recognition, Washington, DC, USA, June 2013, pp. 31663173.
    24. 24)
      • 25. Liu, T., Sun, J., Zheng, N., et al: ‘Learning to detect a salient object’. Proc. IEEE Conf. Computer Vision and Pattern Recognition, Minneapolis, USA, June 2007, pp. 18.
    25. 25)
      • 19. Damera-Venkata, N., Kite, T., Geisler, W., et al: ‘Image quality assessment based on a degradation model’, IEEE Trans. Image Process., 2000, 9, (4), pp. 636650.
    26. 26)
      • 8. Scharfenberger, C., Wong, A., Fergani, K., et al: ‘Statistical textural distinctiveness for salient region detection in natural images’. Proc. IEEE Conf. Computer Vision and Pattern Recognition, Washington, DC, USA, June 2013, pp. 979986.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cvi.2016.0027
Loading

Related content

content/journals/10.1049/iet-cvi.2016.0027
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address