access icon free Two-dimension principal component analysis-based motion detection framework with subspace update of background

Object detection plays a critical role for automatic video analysis in many vision applications. Background subtraction has been the mainstream in the field of moving objects detection. However, most of state-of-the-art techniques of background subtraction operate on each pixel independently ignoring the global features of images. A motion detection method based on subspace update of background is proposed in this study. This method uses a subspace spanned by the principal components of background sequence to characterise the background and integrates the regional continuity of objects to segment the foreground. To deal with changes in the background geometry, a learning factor is introduced into the authors’ model to update the subspace timely. Additionally, to reduce computational complexity, they use two-dimension principal component analysis (PCA) rather than traditional PCA to obtain the principal components of background. Experiments demonstrate that the update policy is effective and in most cases this proposed method can achieve better results than others compared in this study.

Inspec keywords: video signal processing; image segmentation; image sequences; computational complexity; object detection; principal component analysis; feature extraction

Other keywords: background subspace update; motion detection framework; learning factor; two-dimension PCA; update policy; background sequence; image global feature; two-dimension principal component analysis; background subtraction; object detection; computational complexity; automatic video analysis; object segmentation; background geometry

Subjects: Computer vision and image processing techniques; Video signal processing; Other topics in statistics; Image recognition; Other topics in statistics

References

    1. 1)
      • 17. He, Y., Harwood, D., Zhu, M.: ‘Background subtraction based on nonparametric Bayesian estimation’. Proc. Int. Conf. of Digital Image Processing, 2001, pp. 80090G80090G-5.
    2. 2)
      • 29. Dikmen, M., Huang, T.S.: ‘Robust estimation of foreground in surveillance videos by sparse error estimation’. Proc. of 19th Int. Conf. on Pattern Recognition (ICPR), 2008, pp. 14.
    3. 3)
      • 9. Bouwmans, T.: ‘Traditional and recent approaches in background modeling for foreground detection: an overview’, Comput. Sci. Rev., 2014, 11, pp. 3166.
    4. 4)
      • 25. Zhou, X., Yang, C., Yu, W.: ‘Moving object detection by detecting contiguous outliers in the low-rank representation’, IEEE Trans. Pattern Anal. Mach. Intell., 2013, 35, (3), pp. 597610.
    5. 5)
      • 1. Moeslund, T.B., Hilton, A., Krüger, V.: ‘A survey of advances in vision-based human motion capture and analysis’, Comput. Vis. Image Underst., 2006, 104, (2), pp. 90126.
    6. 6)
      • 14. Jacques, J., Jung, C.R., Musse, S.R.: ‘A background subtraction model adapted to illumination changes’. Proc. of IEEE Int. Conf. on Image Processing, 2006, pp. 18171820.
    7. 7)
      • 12. El Maadi, A., Maldague, X.: ‘Outdoor infrared video surveillance: a novel dynamic technique for the subtraction of a changing background of IR images’, Infrared Phys. Technol., 2007, 49, (3), pp. 261265.
    8. 8)
      • 27. Lin, H.H., Liu, T.L., Chuang, J.H.: ‘Learning a scene background model via classification’, IEEE Trans. Signal Process., 2009, 57, (5), pp. 16411654.
    9. 9)
      • 36. Wang, Y., Jodoin, P.M., Porikli, F., et al: ‘CDnet 2014: an expanded change detection benchmark dataset’. Proc. of IEEE Conf. on Computer Vision and Pattern Recognition Workshops (CVPRW), 2014, pp. 393400.
    10. 10)
      • 28. Cevher, V., Sankaranarayanan, A., Duarte, M.F., et al: ‘Compressive sensing for background subtraction’. Computer Vision-ECCV 2008, Berlin, 2008, pp. 155168.
    11. 11)
      • 33. Li, S.Z.: ‘Markov random field modeling in image analysis’ (Springer Science & Business Media, Tokyo, 2001), pp. 249285.
    12. 12)
      • 34. Kolmogorov, V., Zabin, R.: ‘What energy functions can be minimized via graph cuts?’, IEEE Trans. Pattern Anal. Mach. Intell., 2004, 26, (2), pp. 147159.
    13. 13)
      • 26. Guo, X., Wang, X., Yang, L., et al: ‘Robust foreground detection using smoothness and arbitrariness constraints’. Computer Vision-ECCV 2014, 2014, pp. 535550.
    14. 14)
      • 11. Cacallaro, A., Ebrahimi, T.: ‘Video object extraction based on adaptive background and statistical change detection’. Proc. of Photonics West 2001-Electronic Imaging, 2000, pp. 465475.
    15. 15)
      • 21. Wang, H., Suter, D.: ‘A consensus-based method for tracking: modelling background scenario and foreground appearance’, Pattern Recognit., 2007, 40, (3), pp. 10911105.
    16. 16)
      • 20. Barnich, O., Van Droogenbroeck, M.: ‘ViBe: a universal background subtraction algorithm for video sequences’, IEEE Trans. Image Process., 2011, 20, (6), pp. 17091724.
    17. 17)
      • 23. Tsai, D.M., Lai, S.C.: ‘Independent component analysis-based background subtraction for indoor surveillance’, IEEE Trans. Image Process., 2009, 18, (1), pp. 158167.
    18. 18)
      • 31. Sun, Y., Tao, X., Li, Y., et al: ‘Robust two-dimensional principal component analysis via alternating optimization’. Int. Conf. on Image Processing, ICIP, Melbourne, Australia, September 2013, pp. 340344.
    19. 19)
      • 4. Alex, D.S., Wahi, A.: ‘BSFD: background subtraction frame difference algorithm for moving object detection and extraction’, J. Theor. Appl. Inf. Technol., 2014, 60, (3), pp. 623628.
    20. 20)
      • 7. Brutzer, S., Höferlin, B., Heidemann, G.: ‘Evaluation of background subtraction techniques for video surveillance’. Proc. of IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), Jane 2011, pp. 19371944.
    21. 21)
      • 3. Singla, N.: ‘Motion detection based on frame difference method’, Int. J. Inf. Comput. Technol., 2014, 4, (15), pp. 15591565.
    22. 22)
      • 15. Haritaoglu, I., Harwood, D., Davis, L.S.: ‘W4: real-time surveillance of people and their activities’, IEEE Trans. Pattern Anal. Mach. Intell., 2000, 22, (8), pp. 809830.
    23. 23)
      • 2. Migliore, D.A., Matteucci, M., Naccari, M.: ‘A revaluation of frame difference in fast and robust motion detection’. Proc. of the Fourth ACM Int. Workshop on Video Surveillance and Sensor Networks, October 2006, pp. 215218.
    24. 24)
      • 6. Xu, L., Jia, J., Matsushita, Y.: ‘Motion detail preserving optical flow estimation’, IEEE Trans. Pattern Anal. Mach. Intell., 2012, 34, (9), pp. 17441757.
    25. 25)
      • 5. Brox, T., Malik, J.: ‘Large displacement optical flow: descriptor matching in variational motion estimation’, IEEE Trans. Pattern Anal. Mach. Intell., 2011, 33, (3), pp. 500513.
    26. 26)
      • 22. Oliver, N.M., Rosario, B., Pentland, A.P.: ‘A Bayesian computer vision system for modelling human interactions’, IEEE Trans. Pattern Anal. Mach. Intell., 2000, 22, (8), pp. 831843.
    27. 27)
      • 30. Mahadevan, V., Vasconcelos, N.: ‘Spatiotemporal saliency in dynamic scenes’, IEEE Trans. Pattern Anal. Mach. Intell., 2010, 32, (1), pp. 171177.
    28. 28)
      • 16. Stauffer, C., Grimson, W.E.L.: ‘Adaptive background mixture models for real-time tracking’. Proc. of IEEE Computer Society Conf. on Computer Vision and Pattern Recognition, 1999, vol. 2, pp. 246252.
    29. 29)
      • 8. Sobral, A., Vacavant, A.: ‘A comprehensive review of background subtraction algorithms evaluated with synthetic and real videos’, Comput. Vis. Image Underst., 2014, 122, pp. 421.
    30. 30)
      • 35. Bouwmans, T., Zahzah, E.: ‘Robust PCA via principal component pursuit: a review for a comparative evaluation in video surveillance’. Special Issue on Background Models Challenge, Computer Vision and Image Understanding, CVIU 2014, 2014.
    31. 31)
      • 19. Elgammal, A., Harwood, D., Davis, L.: ‘Non-parametric model for background subtraction’. Computer Vision-ECCV 2000, Berlin, 2000, vol. 1843, pp. 751753.
    32. 32)
      • 18. Haines, T.S.F., Xiang, T.: ‘Background subtraction with Dirichlet process mixture models’, IEEE Trans. Pattern Anal. Mach. Intell., 2014, 36, (4), pp. 670683.
    33. 33)
      • 10. Bouwmans, T.: ‘Subspace learning for background modeling: a survey’, Recent Pat. Comput. Sci., 2009, 2, (3), pp. 223234.
    34. 34)
      • 32. Sun, Y., Tao, X., Li, Y., et al: ‘Robust 2D principal component analysis: a structured sparsity regularized approach’, IEEE Trans. Image Process., 2015, pp. 25152526.
    35. 35)
      • 24. Davis, J., Goadrich, M.: ‘The relationship between precision–recall and ROC curves’. Proc. of the 23rd Int. Conf. on Machine Learning, 2006, pp. 233240.
    36. 36)
      • 13. Abbott, R.G., Williams, L.R.: ‘Multiple target tracking with lazy background subtraction and connected components analysis’, Mach. Vis. Appl., 2009, 20, (2), pp. 93101.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cvi.2015.0298
Loading

Related content

content/journals/10.1049/iet-cvi.2015.0298
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading