access icon free Content-based image retrieval system via sparse representation

The aim of image retrieval systems is to automatically assess, retrieve and represent relative images-based user demand. However, the accuracy and speed of image retrieval are still an interesting topic of many researches. In this study, a new method based on sparse representation and iterative discrete wavelet transform has been proposed. To evaluate the applicability of the proposed feature-based sparse representation for image retrieval technique, the precision at percent recall and average normalised modified retrieval rank are used as quantitative metrics to compare different methods. The experimental results show that the proposed method provides better performance in comparison with other methods.

Inspec keywords: discrete wavelet transforms; image representation; feature extraction; content-based retrieval; image retrieval

Other keywords: content based image retrieval system; image based user demand; quantitative metrics; sparse representation; image retrieval technique; feature based sparse representation; iterative discrete wavelet transform

Subjects: Optical, image and video signal processing; Integral transforms; Information retrieval techniques; Computer vision and image processing techniques; Integral transforms

References

    1. 1)
      • 18. Zhang, S., Huang, Q., Hua, G., et al: ‘Building contextual visual vocabulary for large-scale image applications’. ACM Multimedia, 2010, pp. 2529.
    2. 2)
    3. 3)
    4. 4)
    5. 5)
      • 9. Nixon, M., Aguado, A.: ‘Feature extraction & image processing’ (Elsevier Ltd., 2002, 2nd edn., 2008).
    6. 6)
      • 35. Flower dataset, Available at: http://www.robots.ox.ac.uk/~vgg/data/flowers/17/.
    7. 7)
    8. 8)
      • 42. Hiremath, P.S., Shivashankar, S., Pujari, J.: ‘Wavelet based features for color texture classification with application to CBIR’, IJCSNS Int. J. Comput. Sci. Netw. Secur., 2006, 6, (9), pp. 124133.
    9. 9)
    10. 10)
    11. 11)
    12. 12)
      • 3. Starostenko, O., Chávez-Aragón, A., Burlak, G., et al: ‘A novel star field approach for shape indexing in CBIR system’, J. Eng. Lett., 2007, 1, (2), pp. 1021.
    13. 13)
      • 28. Donoho, D., Tsaig, Y.: ‘Fast solution of l1-norm minimization problems when the solution may be sparse’, preprint, 2006, pp. 47894812, http://www.stanford.edu/~tsaig/research.html.
    14. 14)
      • 25. Mohamadzadeh, S., Farsi, H.: ‘Image retrieval using color-texture features extracted from Gabor-Walsh wavelet pyramid’, J. Inf. Syst. Telecommun., 2014, 2, (1), pp. 3140.
    15. 15)
    16. 16)
    17. 17)
      • 26. Mallat, S.A.: ‘Wavelet tour of signal processing’ (Academic press, San Diego, CA, 1999).
    18. 18)
    19. 19)
      • 39. International organization for standardization, MPEG-7 overview 2004. Available at http://www.mpeg.chiariglione.org/standards/mpeg-7/mpeg-7.htm, accessed 15 November 2011.
    20. 20)
    21. 21)
    22. 22)
      • 45. Jiang, Q., We, W., Zhang, H.: ‘New researches about dominant color descriptor and graph edit distance’, Int. Conf. Intell. Human-Mach. Syst. Cybern. (IHMSC), 2011, 1, pp. 5052.
    23. 23)
      • 17. Siddiquie, B., Feris, R., Davis, L.: ‘Image ranking and retrieval based on multi-attribute queries’. CVPR, 2011, pp. 801808.
    24. 24)
    25. 25)
    26. 26)
      • 38. VisTex Texture Dataset. Available at: http://www.vismod.media.mit.edu/vismod/imagery/VisionTexture/.
    27. 27)
    28. 28)
      • 31. Yang, A.Y., Zhou, Z., Ganesh, A., et al: ‘Fast l1-minimization algorithms for robust face recognition’, IEEE Trans. Image Processing, 2013, 22, (8), pp. 32343246.
    29. 29)
      • 7. Liapis, S., Tziritas, G.: ‘Color and texture image retrieval using chromaticity histograms and wavelet frames’, IEEE Trans. Multimedia, 2004, 6, (5), pp. 676686.
    30. 30)
      • 36. Coral dataset, last referred on June 2009, Available at: http://www.wang.ist.psu.edu/docs/related/.
    31. 31)
    32. 32)
      • 44. Ibrahim, A., Zou'bi, A., Sahawneh, R., et al: ‘Fixed representative colours feature extraction algorithm for moving picture experts group-7 dominant color descriptor’, Int. J. Comput. Sci., 2009, 5, (11), pp. 773777.
    33. 33)
    34. 34)
      • 43. Troncy, R., Huet, B., Schenk, S.: ‘Feature extraction for multimedia analysis: ‘Multimedia Semantics, Desktop Edition (XML): Metadata, Analysis and Interaction’ (John Wiley & Sons Inc., New York, 2011, 1st edn.), pp. 3654.
    35. 35)
    36. 36)
    37. 37)
    38. 38)
      • 11. Davenport, M.A., Duarte, M.F., Eldar, Y.C., et al: ‘Introduction to compressed sensing’ (Department of Statistics at Stanford University, 2011), pp. 168.
    39. 39)
    40. 40)
    41. 41)
    42. 42)
    43. 43)
    44. 44)
      • 24. Farsi, H., Mohamadzadeh, S.: ‘Combining Hadamard matrix, discrete wavelet transform and DCT features based on PCA and KNN for image retrieval’, Majlesi J. Electr. Eng., 2013, 7, (1), pp. 915.
    45. 45)
      • 12. Elad, M.: ‘Sparse and redundant representations’ (Springer, New York, 2010).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cvi.2015.0165
Loading

Related content

content/journals/10.1049/iet-cvi.2015.0165
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading