http://iet.metastore.ingenta.com
1887

Parallel algorithm implementation for multi-object tracking and surveillance

Parallel algorithm implementation for multi-object tracking and surveillance

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Computer Vision — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

A recently developed sparse representation algorithm, has been proved to be useful for multi-object tracking and this study is a proposal for developing its parallelisation. An online dictionary learning is used for object recognition. After detection, each moving object is represented by a descriptor containing its appearance features and its position feature. Any detected object is classified and indexed according to the sparse solution obtained by an orthogonal matching pursuit (OMP) algorithm. For a real-time tracking, the visual information needs to be processed very fast without reducing the results accuracy. However, both the large size of the descriptor and the growth of the dictionary after each detection, slow down the system process. In this work, a novel accelerating OMP algorithm implementation on a graphics processing unit is proposed. Experimental results demonstrate the efficiency of the parallel implementation of the used algorithm by significantly reducing the computation time.

References

    1. 1)
    2. 2)
      • M. Andriluka , S. Roth , B. Schiele .
        2. Andriluka, M., Roth, S., Schiele, B.: ‘People-tracking-by-detection and people-detection-by-tracking’. IEEE Conf. on CVPR, 2008, pp. 18.
        . IEEE Conf. on CVPR , 1 - 8
    3. 3)
      • J. Bercla , F. Fleuret , P. Fua .
        3. Bercla, J., Fleuret, F., Fua, P.: ‘Robust people tracking with global trajectory optimization’. IEEE Computer Society Conf. on Computer Vision and Pattern Recognition, 2006, vol. 1, pp. 744750.
        . IEEE Computer Society Conf. on Computer Vision and Pattern Recognition , 744 - 750
    4. 4)
      • C. Huang , B. Wu , R. Nevatia . (2008)
        4. Huang, C., Wu, B., Nevatia, R.: ‘Robust object tracking by hierarchical association of detection responses’, Proc. European Conf.Computer Vision–ECCV’, 2008, (Springer, Berlin Heidelberg), pp. 788801.
        .
    5. 5)
    6. 6)
      • X. Chen , Z. Qin , L. An .
        6. Chen, X., Qin, Z., An, L., et al: ‘An online learned elementary grouping model for multi-target tracking’. IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), June 2014, pp. 12421249.
        . IEEE Conf. on Computer Vision and Pattern Recognition (CVPR) , 1242 - 1249
    7. 7)
    8. 8)
      • H. Ben Shitrit , J. Berclaz , F. Fleuret .
        8. Ben Shitrit, H., Berclaz, J., Fleuret, F., et al: ‘Tracking multiple people under global appearance constraints’. IEE Int. Conf. on Computer Vision (ICCV), November 2011, pp. 137144.
        . IEE Int. Conf. on Computer Vision (ICCV) , 137 - 144
    9. 9)
    10. 10)
    11. 11)
    12. 12)
    13. 13)
    14. 14)
    15. 15)
    16. 16)
      • C. Bao , Y. Wu , H. Ling .
        16. Bao, C., Wu, Y., Ling, H., et al: ‘Real time robust l1 tracker using accelerated proximal gradient approach’. , IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), June 2012, pp. 18301837.
        . , IEEE Conf. on Computer Vision and Pattern Recognition (CVPR) , 1830 - 1837
    17. 17)
    18. 18)
      • Q. Wang , F. Chen , W. Xu .
        18. Wang, Q., Chen, F., Xu, W., et al: ‘Online discriminative object tracking with local sparse representation’. IEEE Workshop on Applications of Computer Vision (WACV), January 2012, pp. 425432.
        . IEEE Workshop on Applications of Computer Vision (WACV) , 425 - 432
    19. 19)
    20. 20)
    21. 21)
    22. 22)
    23. 23)
    24. 24)
      • W. Lu , C. Bai , K. Kpalma .
        24. Lu, W., Bai, C., Kpalma, K., et al: ‘Multi-object tracking using sparse representation’. IEEE Int. Conf. on Acoustics, Speech and Signal Processing (ICASSP), May 2013, pp. 23122316.
        . IEEE Int. Conf. on Acoustics, Speech and Signal Processing (ICASSP) , 2312 - 2316
    25. 25)
      • H. Possegger , T. Mauthner , P.M. Roth .
        25. Possegger, H., Mauthner, T., Roth, P.M., et al: ‘Occlusion geodesics for online multi-object tracking’. IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), June 2014, pp. 13061313.
        . IEEE Conf. on Computer Vision and Pattern Recognition (CVPR) , 1306 - 1313
    26. 26)
    27. 27)
      • Z. Wu , J. Zhang , M. Betke .
        27. Wu, Z., Zhang, J., Betke, M.: ‘Online motion agreement tracking’. Proc. BMVC, 2013.
        . Proc. BMVC
    28. 28)
    29. 29)
    30. 30)
      • W. He , T. Yamashita , H. Lu .
        30. He, W., Yamashita, T., Lu, H., et al: ‘Surf tracking’. IEEE 12th Int. Conf. on Computer Vision, September 2009, pp. 15861592.
        . IEEE 12th Int. Conf. on Computer Vision , 1586 - 1592
    31. 31)
    32. 32)
    33. 33)
    34. 34)
    35. 35)
      • Y. Fang , L. Chen , J. Wu .
        35. Fang, Y., Chen, L., Wu, J., et al: ‘Gpu implementation of orthogonal matching pursuit for compressive sensing’. Parallel and Distributed Systems (ICPADS), December 2011, pp. 10441047.
        . Parallel and Distributed Systems (ICPADS) , 1044 - 1047
    36. 36)
    37. 37)
      • A. Amato , M.G. Mozerov , F.X. Roca .
        37. Amato, A., Mozerov, M.G., Roca, F.X., et al: ‘Robust real-time background subtraction based on local neighborhood patterns’, EURASIP Adv. Signal Proc, 2010, 34, pp. 17.
        . EURASIP Adv. Signal Proc , 1 - 7
    38. 38)
    39. 39)
    40. 40)
    41. 41)
      • G. Swirszcz , N. Abe , A.C. Lozano .
        41. Swirszcz, G., Abe, N., Lozano, A.C.: ‘Grouped orthogonal matching pursuit for variable selection and prediction’. Advances in Neural Information Processing Systems, 2009, pp. 11501158.
        . Advances in Neural Information Processing Systems , 1150 - 1158
    42. 42)
    43. 43)
      • 43. PETS 2009 Benchmark Data ‘http://cs.binghamton.edu/~mrldata/pets2009.
        .
    44. 44)
    45. 45)
      • 45. Our results: https://www.youtube.com/watch?v=8WX2Rvn36mQ.
        .
    46. 46)
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cvi.2015.0115
Loading

Related content

content/journals/10.1049/iet-cvi.2015.0115
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address