access icon free Efficient levels of spatial pyramid representation for local binary patterns

Local binary patterns (LBPs) are a well-known operator that shows the ability for rotation and scale invariant texture classification. A recent extension of this operator is the pyramid transform domain approach on LBPs (PLBP). Obtaining more accuracy by using more pyramid representations is an important result of PLBP, which increases not only feature dimensionality, but also classification computational time (CT). This study illustrates that more pyramid image representations will not improve the performance of the PLBP. We evaluate efficient levels of representation for the PLBP descriptor. In addition, the authors propose some feature selection approaches, such as the multi-level and multi-resolution (ML + MR) approach and the ML, MR and multi-band (ML + MR + MB) approach and discuss their efficiency and CT. Experimental results show that the proposed feature selection approaches improve the accuracy of texture classification with fewer pyramid image representations. In addition, replacing the Chi-2 similarity measurement with Czekannowski improves the accuracy of texture classification.

Inspec keywords: image representation; image texture; image classification

Other keywords: scale invariant texture classification; texture classification; Czekannowski; pyramid transform domain approach; rotation invariant texture classification; multiresolution approach; feature selection approaches; spatial pyramid representation; classification computational time; local binary patterns; pyramid image representations

Subjects: Optical, image and video signal processing; Computer vision and image processing techniques

References

    1. 1)
      • 37. Xiao, F., Liang, Y., Qu, X.: ‘Learning local binary patterns with enhanced boosting for face recognition’. Seventh Int. Conf. on Computational Intelligence and Security (CIS), 2011.
    2. 2)
      • 49. Cha, S.-H.: ‘Taxonomy of nominal type histogram distance measures’. American Conf. on Applied Mathematics (MATH ‘08), 2008.
    3. 3)
      • 45. Brodatz, P.: ‘Textures: a photographic album for artists and designers’ (Dover Publications, New York, NY, 1966).
    4. 4)
      • 21. Shengping, Z., Hongxun, Y., Shaohui, L.: ‘Dynamic background modeling and subtraction using spatio-temporal local binary patterns’. 15th IEEE Int. Conf. on Image Processing, 2008. ICIP 2008, 2008.
    5. 5)
    6. 6)
      • 46. Available at http://vismod.media.mit.edu/pub/, accessed 1995.
    7. 7)
    8. 8)
      • 31. Fei-Fei, L., Perona, P.: ‘A Bayesian hierarchical model for learning natural scene categories’. IEEE Computer Society Conf. on Computer Vision and Pattern Recognition, 2005. CVPR 2005, 2005.
    9. 9)
    10. 10)
    11. 11)
    12. 12)
    13. 13)
    14. 14)
      • 26. Bosch, A., Zisserman, A., Muñoz, X.: ‘Representing shape with a spatial pyramid kernelProc. 6th ACM Int. Conf. on Image and Video Retrieval, Amsterdam, The Netherlands, 2007, pp. 401–408.
    15. 15)
      • 24. Lazebnik, S., Schmid, C., Ponce, J.: ‘Beyond bags of features: spatial pyramid matching for recognizing natural scene categories’. 2006 IEEE Computer Society Conf. on Computer Vision and Pattern Recognition, 2006.
    16. 16)
      • 39. Guo, Z., Zhang, L., Zhang, D.: ‘A completed modeling of local binary pattern operator for texture classification’, IEEE Trans. Image Process., 2010, 9, (16), pp. 16571663.
    17. 17)
      • 56. Topi, M., Matti, P., Timo, O.: ‘Texture classification by multi-predicate local binary pattern operators’. 15th Int. Conf. on Pattern Recognition, 2000. Proc., 2000.
    18. 18)
    19. 19)
    20. 20)
      • 22. Heikkilä, M., Pietikäinen, M., Heikkilä, J.: ‘A texture-based method for detecting moving objects’. British Machine Vision Conf. (BMVC), 2004.
    21. 21)
    22. 22)
      • 6. Rowshan, B.R.: ‘Texture classification in underwater images’ (MSc Erasmus Mundus in Vision and RoBOTics (ViBOT), Universitat de Girona, Spain, 2011).
    23. 23)
    24. 24)
    25. 25)
    26. 26)
      • 47. Available at http://www.cssip.elec.uq.edu.au/~guy/meastex/meastex.html, accessed 1998.
    27. 27)
      • 5. Mathew, B., Davis, A., Evans, R.: ‘A characterization of visual feature recognition’. IEEE Sixth Annual Workshop on Workload Characterization, 2003.
    28. 28)
    29. 29)
    30. 30)
      • 4. Filiberto, P., Gema, G., Pedro, G.-S., Mirmehdi, M., Xianghua, X.: ‘Multi-spectral texture characterisation for remote sensing image segmentation’. Proc. of the Fourth Iberian Pattern Recognition and Image Analysis Conf., 2009.
    31. 31)
      • 50. Mallat, S.: ‘A wavelet tour of signal processing’ (Elsevier Inc. San Diego, CA, 1999).
    32. 32)
    33. 33)
    34. 34)
    35. 35)
      • 44. Torralba, A., William, K., Freeman, T., Rubin, M.: ‘Context-based vision system for place and object recognitionProc. 9th IEEE Int. Conf. on Computer Vision, Nice, France, 2003, vol 1, pp. 273–280.
    36. 36)
    37. 37)
    38. 38)
    39. 39)
      • 38. Turtinen, M., Pietikäinen, M., Silvén, O.: ‘Visual characterization of paper using isomap and local binary patterns’, IEICE Trans., 2006, 89, pp. 20762083.
    40. 40)
    41. 41)
    42. 42)
    43. 43)
    44. 44)
    45. 45)
    46. 46)
      • 54. Arasteh, S., Hung, C.-C., Kuo, B.-C.: ‘Image texture segmentation using local binary pattern and color information: a comparison’. Int. Computer Symp. (ICS 2006), 2006.
    47. 47)
    48. 48)
      • 33. Pietikäinen, M., Hadid, A., Zhao, G., Ahonen, T.: ‘Computer vision using local binary patterns’ (Springer, London, 2011).
    49. 49)
    50. 50)
    51. 51)
      • 28. Kittler, J.: ‘Handbook of pattern recognition and image processing’ (Academic Press, New York, NY, 1986).
    52. 52)
    53. 53)
    54. 54)
    55. 55)
    56. 56)
      • 27. Hand, D.J.: ‘Discrimination and classification’ (John Wiley & Sons, New York, NY, 1981).
    57. 57)
      • 29. Available at http://www.outex.oulu.fi, accessed 2002.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cvi.2015.0028
Loading

Related content

content/journals/10.1049/iet-cvi.2015.0028
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading