access icon free Graph clustering by congruency approximation

The authors consider the general problem of graph clustering. Graph clustering manipulates the graph-based data structure and the entries of the solution vectors are only allowed to take non-negative discrete values. Finding the optimal solution is NP-hard, so relaxations are usually considered. Spectral clustering retains the orthogonality rigorously but ignores the non-negativity and discreteness of the solution. Sym non-negative matrix factorisation can retain the non-negativity rigorously but it is hard to reach the orthogonality. In this study, they proposed a novel method named congruent approximate graph clustering (CAC), which can retain the non-negativity rigorously and can reach the orthogonality properly by congruency approximation. Furthermore, the solution obtained by CAC is sparse, which is approximate with the ideal discrete solution. Experimental results on several real image benchmark datasets indicate that CAC achieves encouraging results compared with state-of-the-art methods.

Inspec keywords: matrix decomposition; pattern clustering; graph theory; computational complexity

Other keywords: spectral clustering; solution vectors; graph-based data structure; NP-hard optimal solution; nonnegative matrix factorisation; congruent approximate graph clustering; CAC; congruency approximation; ideal discrete solution; nonnegative discrete values; real image benchmark datasets

Subjects: Computational complexity; Data handling techniques; Combinatorial mathematics; Algebra

References

    1. 1)
      • 15. Dhillon, I.S., Guan, Y., Kulis, B.: ‘Kernel k-means: spectral clustering and normalized cuts’. Proc. of the 10th ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining.ACM, 2004, pp. 551556.
    2. 2)
      • 14. Zhang, R., Rudnicky, A.I.: ‘A large scale clustering scheme for kernel k-means’. 16th Int. Conf. on Pattern Recognition, 2002. Proc, 2002, vol. 4, pp. 289292.
    3. 3)
    4. 4)
      • 34. Plummer, M.D., Lovász, L.: ‘Matching theory’ (Elsevier, Amsterdam, 1986).
    5. 5)
    6. 6)
    7. 7)
    8. 8)
      • 39. Dempster, A.P., Laird, N.M., Rubin, D.B.: ‘Maximum likelihood from incomplete data via the EM algorithm’, J. R. Stat. Soc., 1977, 39, (1), pp. 138.
    9. 9)
      • 25. Arias-Castro, E., Lerman, G., Zhang, T.: ‘Spectral clustering based on local PCA’. arXiv preprint arXiv:1301.2007, 2013.
    10. 10)
      • 13. ‘Matrixcongruence’. Available at http://www.en.wikipedia.org/wiki/Matrix_congruence, accessedApril 2014.
    11. 11)
    12. 12)
      • 33. Jolliffe, I.: ‘Principal component analysis’ (John Wiley & Sons, Ltd., Chichester, 2005).
    13. 13)
      • 18. Xu, W., Liu, X., Gong, Y.: ‘Document clustering based on non-negative matrix factorization’. Proc. of the 26th Annual Int. ACM SIGIR Conf. on Research and Development in Information Retrieval, 2003, pp. 267273.
    14. 14)
    15. 15)
      • 41. Ding, C., He, X., Zha, H., et al: ‘A min-max cut algorithm for graph partitioning and data clustering’. Proc. IEEE Int. Conf. on Data Mining, San Jose, CA, 2001, pp. 107114.
    16. 16)
    17. 17)
      • 36. ‘Approximation algorithms’. Available at http://www.en.wikipedia.org/wiki/Approximation_algorithm, accessedApril 2014.
    18. 18)
    19. 19)
      • 35. Chapelle, O., Zien, A.: ‘Semi-supervised classification by low density separation’. Proc. of the Tenth Int. Workshop on Artificial Intelligence and Statistics, 2005, pp. 5764.
    20. 20)
    21. 21)
    22. 22)
      • 26. James, W., Stein, C.: ‘Estimation with quadratic loss’, Proc. Fourth Berkeley Symp. Math. Stat. Probab., 1961, 1, (1961), pp. 361379.
    23. 23)
      • 3. Ng, A.Y., Jordan, M.I., Weiss, Y.: ‘On spectral clustering analysis and an algorithm’. Proc. of Advances in Neural Information Processing Systems, Cambridge, MA, 2001, vol. 14, pp. 849856.
    24. 24)
    25. 25)
      • 28. Kulis, B., Sustik, M.A., Dhillon, I.S.: ‘Low-rank kernel learning with Bregman matrix divergences’, J. Mach. Learn. Res., 2009, 10, pp. 341376.
    26. 26)
      • 12. Kuang, D., Park, H., Ding, C.H.Q.: ‘Symmetric nonnegative matrix factorization for graph clustering’, SDM, 2012, 12, pp. 106117.
    27. 27)
    28. 28)
    29. 29)
    30. 30)
      • 20. Hoyer, P.O.: ‘Non-negative sparse coding’. Neural Networks for Signal Processing, 2002. Proc. of the 2002 12th IEEE Workshop on, 2002, pp. 557565.
    31. 31)
    32. 32)
      • 21. Hoyer, P.O.: ‘Non-negative matrix factorization with sparseness constraints’, J. Mach. Learn. Res., 2004, 5, pp. 14571469.
    33. 33)
    34. 34)
      • 37. Balcan, M.F., Blum, A., Gupta, A.: ‘Approximate clustering without the approximation’. Proc. of the 20th Annual ACM-SIAM Symp.n Discrete Algorithms, 2009, pp. 10681077.
    35. 35)
      • 24. Li, Z., Liu, J., Chen, S., et al: ‘Noise robust spectral clustering’. . IEEE 11th Int. Conf. on Computer Vision, 2007. ICCV 2007, 2007, pp. 18.
    36. 36)
      • 11. Ding, C.H.Q., He, X., Simon, H.D.: ‘On the equivalence of nonnegative matrix factorization and spectral clustering’, SDM, 2005, 5, pp. 606610.
    37. 37)
      • 30. Pissanetzky, S.: ‘Sparse matrix technology’ (Academic Press, London, 1984).
    38. 38)
      • 10. Luo, D., Ding, C., Huang, H., et al: ‘Non-negative Laplacian embedding’. Ninth IEEE Int. Conf. on Data Mining, 2009. ICDM'09, 2009, pp. 337346.
    39. 39)
      • 22. Jebara, T., Wang, J., Chang, S.F.: ‘Graph construction and b-matching for semi-supervised learning’. Proc. of the 26th Annual Int. Conf. on Machine Learning, 2009, pp. 441448.
    40. 40)
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cvi.2014.0131
Loading

Related content

content/journals/10.1049/iet-cvi.2014.0131
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading