http://iet.metastore.ingenta.com
1887

Analysis of planar-motion segmentation using affine fundamental matrix

Analysis of planar-motion segmentation using affine fundamental matrix

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Computer Vision — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Various computer-vision applications involve estimation of multiple motions from images of dynamic scenes. The exact nature of 3D-object motions and the camera parameters are often not known a priori and therefore, the most general motion model (fundamental matrix) is applied. Although the estimation of fundamental matrix and its use for motion segmentation are established, the conditions for segmentation of different types of motions are largely unaddressed. In this study, we analysed the feasibility of motion segmentation using affine-fundamental matrix, focusing on a scene includes multiple planar-motions, viewed by an uncalibrated camera. We show that the successful segmentation of planar motion depends on several scene and motion parameters. Conditions to guarantee successful segmentation are proposed via extensive experiments using synthetic images. Experiments using real-image data were set up to examine the relevance of those conditions to the scenarios in real applications. The experimental results demonstrate the capability of the proposed conditions to correctly predict the outcome of several segmentation scenarios and show the relevance of those conditions in real applications. In practice, the success of motion segmentation could be predicted from obtainable scene and motion parameters. Therefore these conditions serve as a guideline for practitioners in designing motion-segmentation solutions.

References

    1. 1)
    2. 2)
      • R. Hartley , A. Zisserman .
        2. Hartley, R., Zisserman, A.: ‘Multiple view geometry in computer vision’ (Cambridge University Press, Cambridge, UK, 2003, 2nd edn.).
        .
    3. 3)
      • O. Faugeras , Q.-T. Luong , T. Papadopoulou . (2001)
        3. Faugeras, O., Luong, Q.-T., Papadopoulou, T.: ‘The geometry of multiple images: the laws that govern the formation of images of a scene and some of their applications’ (MIT Press, Cambridge, MA, USA, 2001).
        .
    4. 4)
      • Y. Ma , S. Soatto , J. Kosecka , S.S. Sastry .
        4. Ma, Y., Soatto, S., Kosecka, J., Sastry, S.S.: ‘An invitation to 3-D vision: from images to geometric models’ (Springer-Verlag, 2005).
        .
    5. 5)
    6. 6)
    7. 7)
      • J.L. Mundy , A. Zisserman . (1992)
        7. Mundy, J.L., Zisserman, A.: ‘Geometric invariance in computer vision’ (MIT Press, Cambridge, MA, USA, 1992).
        .
    8. 8)
      • G. Xu , Z. Zhang . (1996)
        8. Xu, G., Zhang, Z.: ‘Epipolar geometry in stereo, motion, and object recognition: a unified approach’ (Kluwer Academic Publishers, Norwell, MA, USA, 1996).
        .
    9. 9)
    10. 10)
    11. 11)
    12. 12)
      • 12. N.H-H. Image sequences and datasets from Institut of Algorithm and Cognitive System, Universitat Karlsruhe. http://i21www.ira.uka.de/image_sequences/.
        .
    13. 13)
      • S.N. Basah , R. Hoseinnezhad , A. Bab-Hadiashar .
        13. Basah, S.N., Hoseinnezhad, R., Bab-Hadiashar, A.: ‘Conditions for segmentation of motion with affine fundamental matrix’. Proc. of the Int. Symp. on Visual Computing ISVC, volume 5875 LNCS, Springer-Verlag, Berlin, Heidelberg, 2009, pp. I: 415424.
        . Proc. of the Int. Symp. on Visual Computing ISVC , 415 - 424
    14. 14)
    15. 15)
      • L.S. Shapiro , A. Zisserman , M. Brady .
        15. Shapiro, L.S., Zisserman, A., Brady, M.: ‘Motion from point matches using affine epipolar geometry’. Proc. of the European Conf. on Computer Vision ECCV, Springer, Secaucus, NJ, USA, 1994, vol. II, pp. 7384.
        . Proc. of the European Conf. on Computer Vision ECCV , 73 - 84
    16. 16)
      • P.H.S. Torr . (1995)
        16. Torr, P.H.S.: ‘Motion segmentation and outlier detection’. Phd thesis, Department of Engineering Science, University of Oxford, 1995.
        .
    17. 17)
    18. 18)
    19. 19)
      • L. Wolf , A. Shashua .
        19. Wolf, L., Shashua, A.: ‘Two-body segmentation from two perspective views’. Proc. of the IEEE Computer Society Conf. on Computer Vision and Pattern Recognition CVPR, vol. I, 2001, pp. 263270.
        . Proc. of the IEEE Computer Society Conf. on Computer Vision and Pattern Recognition CVPR , 263 - 270
    20. 20)
      • R. Vidal , R. Hartley .
        20. Vidal, R., Hartley, R.: ‘Motion segmentation with missing data using power factorization and GPCA’. Proc. of the IEEE Computer Society Conf. Computer Vision and Pattern Recognition CVPR, 2004, vol. II, pp. 310316.
        . Proc. of the IEEE Computer Society Conf. Computer Vision and Pattern Recognition CVPR , 310 - 316
    21. 21)
      • R. Vidal , Y. Ma , J. Piazzi .
        21. Vidal, R., Ma, Y., Piazzi, J.: ‘A new GPCA algorithm for clustering subspaces by fitting, differentiating and dividing polynomials’. Proc. of the IEEE Computer Society Conf. on Computer Vision and Pattern Recognition CVPR, 2004, pp. I: 510517.
        . Proc. of the IEEE Computer Society Conf. on Computer Vision and Pattern Recognition CVPR , 510 - 517
    22. 22)
    23. 23)
      • R. Vidal , S. Sastry .
        23. Vidal, R., Sastry, S.: ‘Optimal segmentation of dynamic scenes from two perspective views’. Proc. of the IEEE Computer Society Conf. Computer Vision and Pattern Recognition CVPR, 2003, vol. II, pp. 281286.
        . Proc. of the IEEE Computer Society Conf. Computer Vision and Pattern Recognition CVPR , 281 - 286
    24. 24)
    25. 25)
    26. 26)
      • J. Klappstein , F. Stein , U. Franke .
        26. Klappstein, J., Stein, F., Franke, U.: ‘Detectability of moving objects using correspondences over two and three frames’. Proc. of the DAGM Conf. Pattern Recognition, Springer-Verlag, Berlin, Heidelberg, 2007, pp. 112121.
        . Proc. of the DAGM Conf. Pattern Recognition , 112 - 121
    27. 27)
    28. 28)
      • S.N. Basah , A. Bab-Hadiashar , R. Hoseinnezhad .
        28. Basah, S.N., Bab-Hadiashar, A., Hoseinnezhad, R.: ‘Conditions for segmentation of 2D translations of 3D objects’. Proc. of the Int. Conf. on Image Analysis and Processing ICIAP, 2009, (LNCS 5716), Berlin, Heidelberg, pp. 8291.
        . Proc. of the Int. Conf. on Image Analysis and Processing ICIAP , 82 - 91
    29. 29)
    30. 30)
    31. 31)
      • R. Hesami , A. Bab Hadiashar , R. Hoseinnezhad .
        31. Hesami, R., Bab Hadiashar, A., Hoseinnezhad, R.: ‘A novel hierarchical technique for range segmentation of large building exteriors’. Proc. of the Int. Symp. on Visual Computing ISVC, 2007, (LNCS 4842), pp. II: 7585.
        . Proc. of the Int. Symp. on Visual Computing ISVC , 75 - 85
    32. 32)
      • P.H.S. Torr , D.W. Murray .
        32. Torr, P.H.S., Murray, D.W.: ‘Stochastic motion clustering’. Proc. of the European Conf. on Computer Vision ECCV, Secaucus, NJ, USA, 1994, vol. II, pp. 328337.
        . Proc. of the European Conf. on Computer Vision ECCV , 328 - 337
    33. 33)
    34. 34)
    35. 35)
    36. 36)
      • E.W. Weisstein .
        36. Weisstein, E.W.: ‘Harmonic addition theorem’. From MathWorld-Wolfram Web Resource http://mathworld.wolfram.com/HarmonicAdditionTheorem.html.
        .
    37. 37)
      • M. Evans , N. Hastings , B. Peacock . (2000)
        37. Evans, M., Hastings, N., Peacock, B.: ‘Statistical distributions’ (Wiley, 2000, 3rd edn.).
        .
    38. 38)
    39. 39)
    40. 40)
      • J. Bouguet .
        40. Bouguet, J.: Camera calibration toolbox for matlab. http://www.vision.caltech.edu/bouguetj/calib_doc/index.html.
        .
    41. 41)
    42. 42)
      • D.G. Lowe .
        42. Lowe, D.G.: Sift keypoint detector. http://www.cs.ubc.ca/lowe/keypoints/.
        .
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cvi.2013.0224
Loading

Related content

content/journals/10.1049/iet-cvi.2013.0224
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address