http://iet.metastore.ingenta.com
1887

Multiple instance learning tracking method with local sparse representation

Multiple instance learning tracking method with local sparse representation

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Computer Vision — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

When objects undergo large pose change, illumination variation or partial occlusion, most existed visual tracking algorithms tend to drift away from targets and even fail in tracking them. To address this issue, in this study, the authors propose an online algorithm by combining multiple instance learning (MIL) and local sparse representation for tracking an object in a video system. The key idea in our method is to model the appearance of an object by local sparse codes that can be formed as training data for the MIL framework. First, local image patches of a target object are represented as sparse codes with an overcomplete dictionary, where the adaptive representation can be helpful in overcoming partial occlusion in object tracking. Then MIL learns the sparse codes by a classifier to discriminate the target from the background. Finally, results from the trained classifier are input into a particle filter framework to sequentially estimate the target state over time in visual tracking. In addition, to decrease the visual drift because of the accumulative errors when updating the dictionary and classifier, a two-step object tracking method combining a static MIL classifier with a dynamical MIL classifier is proposed. Experiments on some publicly available benchmarks of video sequences show that our proposed tracker is more robust and effective than others.

References

    1. 1)
      • 1. Yilmaz, A., Javed, O., Shah, M.: ‘Object tracking: a survey’, ACM Comput. Surv., 2006, 38, (4), pp. 145 (doi: 10.1145/1177352.1177355).
    2. 2)
      • 2. Mei, X., Ling, H.: ‘Robust visual tracking and vehicle classification via sparse representation’, IEEE Trans. Pattern Anal. Mach. Intell. (PAMI), 2011, 33, (11), pp. 22592272 (doi: 10.1109/TPAMI.2011.66).
    3. 3)
      • 3. Dietterich, T.G., Lathrop, R.H., Perez, L.T.: ‘Solving the multiple-instance problem with axis parallel rectangles’, Artif. Intell., 1997, 88, (1–2), pp. 3171 (doi: 10.1016/S0004-3702(96)00034-3).
    4. 4)
      • 4. Babenko, B., Yang, M.-H., Belongie, S.: ‘Visual tracking with online multiple instance learning’. Proc. IEEE Conf. on Computer Vision and Pattern Recognition, June 2009, pp. 983990.
    5. 5)
      • 5. Babenko, B., Ming-Hsuan, Y., Belongie, S.: ‘Robust object tracking with online multiple instance learning’, IEEE Trans. Pattern Anal. Mach. Intell., 2011, 33, (8), pp. 16191632 (doi: 10.1109/TPAMI.2010.226).
    6. 6)
      • 6. Matthews, I., Ishikawa, T., Baker, S.: ‘The template update problem’, IEEE Trans. Pattern Anal. Mach. Intell., 2004, 26, (6), pp. 810815 (doi: 10.1109/TPAMI.2004.16).
    7. 7)
      • 7. Wang, Q., Chen, F., Xu, W., Yang, M.-H.: ‘Online discriminative object tracking with local sparse representation’. WACV ‘12 Proc. 2012 IEEE Workshop on the Applications of Computer Vision, January 2012, pp. 425432.
    8. 8)
      • 8. Wang, J., Chen, X., Gao, W.: ‘Online selecting discriminative tracking features using particle filter’. Proc. IEEE Conf. on CVPR, June 2005, pp. 10371042.
    9. 9)
      • 9. Han, Z.J., Ye, Q.X., Jiao, J.B.: ‘Online feature evaluation for object tracking using kalman filter’. 19th Int. Conf. on Pattern Recognition, December 2008, pp. 14.
    10. 10)
      • 10. Han, Z.J., Ye, Q.X., Jiao, J.B.: ‘Feature evaluation by particle filter for adaptive object tracking’. Proc. SPIE Visual Communication and Image Processing, 2009.
    11. 11)
      • 11. Wang, J.Q., Yagi, Y.S.: ‘Integrating color and shape-texture features for adaptive real-time object tracking’, IEEE Trans. Image Process., 2008, 17, (2), pp. 235240 (doi: 10.1109/TIP.2007.914150).
    12. 12)
      • 12. Collins, R.T., Liu, Y., Leordeanu, M.: ‘Online selection of discriminative tracking features’, IEEE Trans. Pattern Anal. Mach. Intell., 2005, 27, (10), pp. 16311643 (doi: 10.1109/TPAMI.2005.205).
    13. 13)
      • 13. Pérez, P., Hue, C., Vermaak, J., Gangnet, M.: ‘Color-based probabilistic tracking’. Proc. European Conf. on Computer Vision, 2002, pp. 661675.
    14. 14)
      • 14. Comaniciu, D., Ramesh, V., Meer, P.: ‘Kernel-based object tracking’, IEEE Trans. Pattern Anal. Mach. Intell., 2003, 25, (5), pp. 564575 (doi: 10.1109/TPAMI.2003.1195991).
    15. 15)
      • 15. Jepson, A.D., Fleet, D.J., El-Maraghi, T.F.: ‘Robust online appearance models for visual tracking’, IEEE Trans. Pattern Anal. Mach. Intell. (PAMI), 2003, 25, (10), pp. 12961311 (doi: 10.1109/TPAMI.2003.1233903).
    16. 16)
      • 16. Ning, J., Zhang, L., Zhang, D., Wu, C.: ‘Scale and orientation adaptive mean shift tracking’, IET Comput. Vis., 2012, 6, (1), pp. 5261 (doi: 10.1049/iet-cvi.2010.0112).
    17. 17)
      • 17. Ning, J., Zhang, L., Zhang, D., Wu, C.: ‘Robust mean shift tracking with corrected background-weighted histogram’, IET Comput. Vis., 2012, 6, (1), pp. 6269 (doi: 10.1049/iet-cvi.2009.0075).
    18. 18)
      • 18. Lowe, D.: ‘Distinctive image features from scale-invariant key points’, Int. J. Comput. Vis., 2004, 60, (2), pp. 91110 (doi: 10.1023/B:VISI.0000029664.99615.94).
    19. 19)
      • 19. Dalal, N., Triggs, B.: ‘Histograms of oriented gradients for human detection’. Proc. IEEE Conf. on Computer Vision and Pattern Recognition, June 2005, pp. 886893.
    20. 20)
      • 20. Ojala, T., Pietikainen, M., Maenpaa, T.: ‘Multiresolution gray-scale and rotation invariant texture classification with local binary patterns’, IEEE Trans. Pattern Anal. Mach. Intell., 2002, 24, (7), pp. 971987 (doi: 10.1109/TPAMI.2002.1017623).
    21. 21)
      • 21. Wright, J., Ma, Y., Mairal, J., Sapiro, G., Huang, T., Yan, S.: ‘Sparse representation for computer vision and pattern recognition’, Proc. IEEE, 2010, 98, (6), pp. 10311044 (doi: 10.1109/JPROC.2010.2044470).
    22. 22)
      • 22. Candès, E., Romberg, J., Tao, T.: ‘Stable signal recovery from incomplete and inaccurate measurements’, Commun. Pure Appl. Math., 2006, 59, (8), pp. 12071223 (doi: 10.1002/cpa.20124).
    23. 23)
      • 23. Donoho, D.: ‘Compressed sensing’, IEEE Trans. Inf. Theory, 2006, 52, (4), pp. 12891306 (doi: 10.1109/TIT.2006.871582).
    24. 24)
      • 24. Wright, J., Yang, A., Ganesh, A., Sastry, S., Ma, Y.: ‘Robust face recognition via sparse representation’, IEEE Trans. Pattern Anal. Mach. Intell., 2009, 31, (2), pp. 210227 (doi: 10.1109/TPAMI.2008.79).
    25. 25)
      • 25. Lin, H.X., Shen, C.H., Shi, Q.F.: ‘Real-time visual tracking using compressive sensing’. IEEE Conf. on CVPR, June 2011, pp. 13051312.
    26. 26)
      • 26. Han, Z., Jiao, J., Zhang, B., Ye, Q., Liu, J.: ‘Visual object tracking via sample-based adaptive sparse representation (AdaSR)’, Pattern Recognit., 2011, 44, (9), pp. 21702183 (doi: 10.1016/j.patcog.2011.03.002).
    27. 27)
      • 27. Bai, T., Li, Y.F.: ‘Robust visual tracking with structured sparse representation appearance model’, Pattern Recognit., 2012, 45, (6), pp. 23902404 (doi: 10.1016/j.patcog.2011.12.004).
    28. 28)
      • 28. Liu, B., Yang, L., Huang, J., Meer, P., Gong, L., Kulikowski, C.: ‘Robust and fast collaborative tracking with two stage sparse optimization’. Proc. ECCV, 2010, no. 4, pp. 624637.
    29. 29)
      • 29. Avidan, S.: ‘Support vector tracking’, IEEE Trans. Pattern Anal. Mach. Intell. , 2004, 26, (8), pp. 10641072 (doi: 10.1109/TPAMI.2004.53).
    30. 30)
      • 30. Avidan, S.: ‘Ensemble tracking’, IEEE Trans. Pattern Anal. Mach. Intell. , 2007, 29, (2), pp. 261271 (doi: 10.1109/TPAMI.2007.35).
    31. 31)
      • 31. Collins, R.T., Liu, Y.: ‘On-line selection of discriminative tracking features’. Proc. IEEE Conf. on Computer Vision, June 2003, pp. 346352.
    32. 32)
      • 32. Kalal, Z., Matas, J., Mikolajczyk, K.: ‘P-N learning: bootstrapping binary classifiers by structural constraints’. Proc. IEEE Conf. on Computer Vision and Pattern Recognition, 2010, pp. 4956.
    33. 33)
      • 33. Yu, Q., Dinh, T.B., Medioni, G.: ‘Online tracking and reacquisition using co-trained generative and discriminative trackers’. Proc. European Conf. on Computer Vision, 2008, pp. 678691.
    34. 34)
      • 34. Avidan, S.: ‘Ensemble tracking’, IEEE Trans. Pattern Anal. Mach. Intell., 2007, 29, (2), pp. 261271 (doi: 10.1109/TPAMI.2007.35).
    35. 35)
      • 35. Zhou, Q.H., Lu, H.C., Yang, M.-H.: ‘Online multiple support instance tracking’. Proc. IEEE Conf. Automatic Face and Gesture Recognition, March 2011, pp. 545552.
    36. 36)
      • 36. Grabner, H., Bischof, H.: ‘On-line boosting and vision’. Proc. IEEE Conf. on Computer Vision and Pattern Recognition, June 2006, pp. 260267.
    37. 37)
      • 37. Parag, T., Porikli, F., Elgammal, A.: ‘Boosting adaptive linear weak classifiers for online learning and tracking’ (CVPR, 2008), pp. 18.
    38. 38)
      • 38. Grabner, H., Leistner, C., Bischof, H.: ‘Semi-supervised on-line boosting for robust tracking’. Proc. European Conf. on Computer Vision, 2008, pp. 234247.
    39. 39)
      • 39. Andrews, S., Tsochantaridis, I., Hofmann, T.: ‘Support vector machines for multiple-instance learning’. Proc. NIPS, 2002, pp. 561568.
    40. 40)
      • 40. Viola, P., Platt, J.C., Zhang, C.: ‘Multiple instance boosting for object detection’ (NIPS, 2007), pp. 14171426.
    41. 41)
      • 41. Chen, Y., Bi, J., Wang, J.Z.: ‘Miles: multiple-instance learning via embedded instance selection’, IEEE Trans. Pattern Anal. Mach. Intell., 2006, 28, (12), pp. 19311947 (doi: 10.1109/TPAMI.2006.248).
    42. 42)
      • 42. Doucet, A., Freitas, N.de., Gordon, N.: ‘Sequential monte carlo methods in practice’ (Springer, 2001).
    43. 43)
      • 43. Arulampalam, M.S., Maskell, S., Gordon, N., Clapp, T.: ‘A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking’, IEEE Trans. Signal Process., 2002, 50, (2), pp. 174188 (doi: 10.1109/78.978374).
    44. 44)
      • 44. Ross, D., Lim, J., Lin, R.S., Yang, M.-H.: ‘Incremental learning for robust visual tracking’, Int. J. Comput. Vis., 2008, 77, (1), pp. 125141 (doi: 10.1007/s11263-007-0075-7).
    45. 45)
      • 45. http://vision.ucsd.edu/~bbabenko/project_miltrack.shtml.
    46. 46)
      • 46. http://www.dabi.temple.edu/~hbling/code_data.htm.
    47. 47)
      • 47. http://www.cs.toronto.edu/~dross/ivt/.
    48. 48)
      • 48. http://gpu4vision.icg.tugraz.at/index.php?content=subsites/prost/prost.php.
    49. 49)
      • 49. Santner, J., Leistner, C., Saffari, A., Pock, T., Bischof, H.: ‘Prost: parallel robust online simple tracking’. June 2010, pp. 723730.
    50. 50)
      • 50. Everingham, M., Van Gool, L., Williams, C., Winn, J., Zisserman, A.: ‘The pascal visual object classes (voc) challenge’, Int. J. Comput. Vis., 2010, 88, (2), pp. 303338 (doi: 10.1007/s11263-009-0275-4).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cvi.2012.0228
Loading

Related content

content/journals/10.1049/iet-cvi.2012.0228
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address