access icon free Probabilistic shape-based segmentation method using level sets

In this study, a novel probabilistic, geometric and dynamic shape-based level sets method is proposed. The shape prior is coupled with the intensity information to enhance the segmentation results. The two-dimensional principal component analysis method is applied on the training shapes to represent the shape variation with enough number of shape projections in the training step. The shape model is constructed using the implicit representation of the projected shapes. A new energy functional is proposed (i) to embed the shape model into the image domain and (ii) to estimate the shape coefficients. The proposed method is validated on synthetic and clinical images with various challenges such as the noise, occlusion and missing information. The authors compare their method with some of related works. Experiments show that the proposed segmentation method is more accurate and robust than other alternatives under different challenges.

* Note: Colour figures are available in the online version of this paper.

Inspec keywords: shape recognition; image representation; image segmentation; principal component analysis

Other keywords: energy functional; two-dimensional principal component analysis method; occlusion; image domain; geometric shape-based level sets method; synthetic images; image segmentation; projected shapes; clinical images; implicit representation; segmentation results; missing information; shape coefficients; level sets; probabilistic shape-based level sets method; dynamic shape-based level sets method; probabilistic shape-based segmentation method

Subjects: Other topics in statistics; Other topics in statistics; Optical, image and video signal processing; Computer vision and image processing techniques

References

    1. 1)
    2. 2)
    3. 3)
    4. 4)
    5. 5)
    6. 6)
    7. 7)
    8. 8)
    9. 9)
      • 1. Cremers, D.: ‘Statistical shape knowledge in variational image segmentation,’ PhD Dissertation, 2002.
    10. 10)
    11. 11)
      • 2. Ali, A.: ‘Image labeling by energy minimization with appearance and shape priors’, PhD Dissertation, University of Louisville, May, 2008.
    12. 12)
    13. 13)
    14. 14)
    15. 15)
    16. 16)
    17. 17)
    18. 18)
    19. 19)
    20. 20)
    21. 21)
    22. 22)
      • 19. Stegmann, M.B.: ‘Active appearance models: theory, extensions, and cases’, Master thesis, Technical University of Denmark, 2000.
    23. 23)
    24. 24)
    25. 25)
    26. 26)
    27. 27)
    28. 28)
      • 17. Abd El Munim, H.: ‘Implicit curve/surface evolution with application to the image segmentation problem’, PhD thesis, University of Louisville, May, 2007.
    29. 29)
    30. 30)
    31. 31)
      • 3. Borman, S.: ‘The expectation maximization algorithm: a short tutorial’, Technical report. Available at http://www.seanborman.com/publications, 2004.
    32. 32)
    33. 33)
    34. 34)
    35. 35)
    36. 36)
    37. 37)
      • 8. Kass, M., Witkin, A., Terzopoulos, D.: ‘Snakes: active contour models’, Int. J. Comput. Vis., 1988, 1, (4), pp. 321331 (doi: 10.1007/BF00133570).
    38. 38)
      • 27. Cremers, D., Osher, S.J., Soatto, S.: ‘Kernel density estimation and intrinsic alignment for shape priors in level set segmentation’, Int. J. Comput. Vis., 2006, 69, (3), pp. 335351 (doi: 10.1007/s11263-006-7533-5).
    39. 39)
      • 31. Saha, P.K., Liang, G., Elkins, J.M., et al: ‘A new osteophyte segmentation algorithm using the partial shape model and its applications to rabbit femur anterior cruciate ligament transection via micro-ct imaging’, IEEE Trans. Biomed. Eng., 2011, 58, (8), pp. 22122238 (doi: 10.1109/TBME.2011.2129519).
    40. 40)
      • 34. Mahdavi, S.S., Chng, N., Spadinger, I., Morris, W.J., Salcudean, S.E.: ‘Semi-automatic segmentation for prostate interventions’, Med. Image Anal., 2011, 15, pp. 226237 (doi: 10.1016/j.media.2010.10.002).
    41. 41)
      • 47. Yang, J., Zhang, D., Frangi, A.F.: ‘Two-dimensional PCA: a new approach to appearance based face representation and recognition’, IEEE Trans. Pattern Anal. Mach. Intell., 2004, 26, pp. 308313.
    42. 42)
      • 35. Roberts, M., Cootes, T., Adams, J.: ‘Vertebral shape: automatic measurement with dynamically sequenced active appearance models’, Proc. Int. Conf. Medical Image Computing and Computer Assisted Intervention, 2005, 2, pp. 733740.
    43. 43)
      • 6. Duda, R.O., Hart, P.E., Stork, D.G.: ‘Pattern classification’ (Wiley-Interscience Publication, 2000, 2nd edn.).
    44. 44)
      • 9. Li, C., Xu, C., Gui, C., Fox, M.D.: ‘Level set evolution without re-initialization: a new variational formulation’. In Proc. 2005 IEEE Computer Society Conf. Computer Vision and Pattern Recognition, 2005, vol. 1, pp. 430436.
    45. 45)
      • 45. Zhu, Y., Papademetris, X., Sinusas, A.J., Duncan, J.: ‘Segmentation of the left ventricle from cardiac mri images using a subject-specific dynamical model’, IEEE Trans. Med. Imaging, 2010, 29, (3), pp. 669687 (doi: 10.1109/TMI.2009.2031063).
    46. 46)
      • 5. Farag, A.A., El-Baz, A., Gimelfarb, G.: ‘Density estimation using modified expectation maximization for a linear combination of gaussians’, In Proc. Int. Conf. Image Processing, 2004, vol. 3, pp. 18711874.
    47. 47)
      • 4. Moon, T.: ‘The expectation-maximization algorithm’, IEEE Signal Process. Mag., 1996, 11, pp. 4760 (doi: 10.1109/79.543975).
    48. 48)
      • 10. Chan, T.F., Vese, L.A.: ‘Active contours without edges’, IEEE Trans. Image Process., 2001, 10, (2), pp. 266277 (doi: 10.1109/83.902291).
    49. 49)
      • 41. Shen, T., Li, H., Huang, X.: ‘Active volume models for medical image segmentation’, IEEE Trans. Med. Imaging, 2011, 30, (3), pp. 774792 (doi: 10.1109/TMI.2010.2094623).
    50. 50)
      • 15. Aslan, M.S., Ali, A., Rara, H., et al: ‘A novel 3d segmentation of vertebral bones from volumetric ct images using graph cuts’, Proceedings of ISVC, 2009, 5876, pp. 519528.
    51. 51)
      • 20. Aslan, M.S., Ali, A., Farag, A.A., Abdelmunim, H., Arnold, B., Xiang, P.: ‘A new segmentation and registration approach for vertebral body analysis’. Proc. Fifth Int. Symp. Biomedical Imaging, 2011, pp. 20062009.
    52. 52)
      • 40. Mumford, D., Shah, J.: ‘Optimal approximations by piecewise smooth functions and associated variational problems’, Commun. Pure Appl. Math., 1989, 42, (4), pp. 577688 (doi: 10.1002/cpa.3160420503).
    53. 53)
      • 42. Dawoud, A.: ‘Lung segmentation in chest radiographs by fusing shape information in iterative thresholding’, IET Comput. Vis., 2011, 5, (3), pp. 185190 (doi: 10.1049/iet-cvi.2009.0141).
    54. 54)
      • 22. Cootes, T.F., Edwards, G.J., Taylor, C.J.: ‘Active appearance models’, IEEE Trans. Pattern Anal. Mach. Intell., 2001, 23, (6), pp. 681685 (doi: 10.1109/34.927467).
    55. 55)
      • 53. Weber, M., Perona, P.: Available at http://www.vision.caltech.edu/html-files/archive.html, Caltech.
    56. 56)
      • 32. Pu, J., Paik, D.S., Meng, X., Roos, J.E., Rubin, G.D.: ‘Shape break-and-repair strategy and its application to automated medical image segmentation’, IEEE Trans. Vis. Comput. Graph., 2011, 17, (1), pp. 115125 (doi: 10.1109/TVCG.2010.56).
    57. 57)
      • 38. Leventon, M., Grimson, E., Faugeras, O.: ‘Statistical shape influence in geodesic active contours’. Proc. Int. Conf. CVPR, 2000, vol. 1, pp. 316323.
    58. 58)
      • 51. Nelder, A.J., Mead, R.: ‘A simplex method for function minimization’, Comput. J., 1968, 7, pp. 308313 (doi: 10.1093/comjnl/7.4.308).
    59. 59)
      • 37. Klinder, T., Ostermann, J., Ehm, M., Franz, A., Kneser, R., Lorenz, C.: ‘Automated model-based vertebra detection, identification, and segmentation in ct images’, Med. Image Anal., 2009, 13, pp. 471482 (doi: 10.1016/j.media.2009.02.004).
    60. 60)
      • 50. Kumar, B.V.K.V., Savvides, M., Xie, C.: ‘Correlation pattern recognition for face recognition’, Proc. IEEE, 2006, 94, (11), pp. 19631976 (doi: 10.1109/JPROC.2006.884094).
    61. 61)
      • 1. Cremers, D.: ‘Statistical shape knowledge in variational image segmentation,’ PhD Dissertation, 2002.
    62. 62)
      • 3. Borman, S.: ‘The expectation maximization algorithm: a short tutorial’, Technical report. Available at http://www.seanborman.com/publications, 2004.
    63. 63)
      • 36. Aslan, M.S., Abdelmunim, H., Farag, A.A.: ‘A probabilistic shape-based segmentation using level sets’, Proc. First IEEE Workshop on Information Theory in Computer Vision and Pattern Recognition (ICCV workshop), 2011, pp. 13721377.
    64. 64)
      • 39. Mahmoodi, S.: ‘Shape-based active contours for fast video segmentation’, IEEE Trans. Signal Process. Lett., 2009, 16, (10), pp. 857860 (doi: 10.1109/LSP.2009.2025924).
    65. 65)
      • 28. Schmid, J., Kim, J., Thalmann, N.M.: ‘Robust statistical shape models for mri bone segmentation in presence of small field of view’, Med. Image Anal., 2011, 15, pp. 155168 (doi: 10.1016/j.media.2010.09.001).
    66. 66)
      • 48. Gao, X., Wang, B., Tao, D., Li, X.: ‘A relay level set method for automatic image segmentation’, IEEE Trans. Syst. Man Cybern., 2011, 41, (2), pp. 518526 (doi: 10.1109/TSMCB.2010.2065800).
    67. 67)
      • 30. Yan, P., Xu, S., Turkbey, B., Kruecker, J.: ‘Adaptively learning local shape statistics for prostate segmentation in ultrasoung’, IEEE Trans. Biomed. Eng., 2011, 58, pp. 633641 (doi: 10.1109/TBME.2010.2094195).
    68. 68)
      • 14. Boykov, Y., Lee, V.S., Rusinek, H., Bansal, R.: ‘Segmentation of dynamic n-d data sets via graph cuts using markov models’. Proc. Int. Conf. Medical Image Computing and Computer-Assisted Intervention, 2001, vol. 2208, pp. 10581066.
    69. 69)
      • 7. Osher, S., Sethian, J.A.: ‘Fronts propogating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations’, J. Comput. Phys., 1988, 79, pp. 1249 (doi: 10.1016/0021-9991(88)90002-2).
    70. 70)
      • 54. Microsoft research cambridge object recognition image database, version 1.0.
    71. 71)
      • 11. Farag, A.A., Hassan, H.: ‘Adaptive segmentation of multi-modal 3d data using robust level set techniques’. Proc. Int. Conf. Medical Image Computing and Computer-Assisted Intervention, 2004, vol. 3216, pp. 143150.
    72. 72)
      • 2. Ali, A.: ‘Image labeling by energy minimization with appearance and shape priors’, PhD Dissertation, University of Louisville, May, 2008.
    73. 73)
      • 25. Tsai, A., Yezzi, A., Wells, W., et al: ‘A shape-based approach to the segmentation of medical imagery using level sets’, IEEE Trans. Med. Imaging, 2003, 22, (2), pp. 137154 (doi: 10.1109/TMI.2002.808355).
    74. 74)
      • 26. Taron, M., Paragios, N., Jolly, M.P.: ‘Registration with uncertainties and statistical modelling of shapes with variabile metric kernels’, IEEE Trans. Pattern Anal. Mach. Intell., 2007, 1, (8), pp. 114.
    75. 75)
      • 46. Heckel, F., Konrad, O., Hahn, H.K., Peitgen, H.O.: ‘Interactive 3d medical image segmentation with energy-minimizing implicit functions’, Comput. Graph., 2011, vol. 35, pp. 275287 (doi: 10.1016/j.cag.2010.12.006).
    76. 76)
      • 49. Aslan, M.S., Abdelmunim, H., Farag, A.A., Arnold, B., Mustafa, E., Xiang, P.: ‘A new shape based segmentation framework using statistical and variational methods’. Proc. Int. Conf. Image Processing, 2011, pp. 717720.
    77. 77)
      • 44. Gao, Y., Sandhu, R., Fichtinger, G., Tannenbaum, A.R.: ‘A coupled global registration and segmentation framework with application to magnetic resonance prostate imagery’, IEEE Trans. Med. Imaging, 2010, 29, pp. 17811794 (doi: 10.1109/TMI.2010.2052065).
    78. 78)
      • 12. Ali, A.M., Farag, A.A.: ‘Automatic lung segmentation of volumetric low-dose ct scans using graph cuts’. Proc. Int. Symp. Visual Computing, 2008, 5358, pp. 258267.
    79. 79)
      • 43. Lee, J., Kim, S., Kim, Y.S., Chung, W.K.: ‘Automated segmentation of the lumbar pedicle in ct images for spinal fusion surgery’, IEEE Trans. Biomed. Eng., 2011, 58, (7), pp. 20512064 (doi: 10.1109/TBME.2011.2135351).
    80. 80)
      • 21. Sandhu, R., Dambreville, S., Yezzi, A., Tannenbaum, A.: ‘A nonrigid kernel-based framework for 2d-3d pose estimation and 2d image segmentation’. IEEE Trans. Pattern Anal. Mach. Intell., 2011, 33, (6), pp. 10981115 (doi: 10.1109/TPAMI.2010.162).
    81. 81)
      • 17. Abd El Munim, H.: ‘Implicit curve/surface evolution with application to the image segmentation problem’, PhD thesis, University of Louisville, May, 2007.
    82. 82)
      • 23. Cootes, T.F., Taylor, C.J., Cooper, D.H., Graham, J.: ‘Active shape models – their training and application’, Comput. Vis. Image Underst., 1995, 61, pp. 3851 (doi: 10.1006/cviu.1995.1004).
    83. 83)
      • 18. Rousson, M., Paragios, N., Deriche, R.: ‘Implicit active shape models for 3d segmentation in mri imaging’. Medical Image Computing and Computer Assisted Intervention, 2004, pp. 209216.
    84. 84)
      • 13. Boykov, Y., Veksler, O., Zabih, R.: ‘Fast approximation energy minimization via garph cuts’, IEEE Trans. Pattern Anal. Mach. Intell., 2001, 23, (11), pp. 12221239 (doi: 10.1109/34.969114).
    85. 85)
      • 33. Feulner, J., Zhou, S.K., Hammon, M., et al: ‘A probabilistic model for automatic segmentation of the esophagus in 3-d ct scans’, IEEE Trans. Med. Imaging, 2011, 30, (6), pp. 12521265 (doi: 10.1109/TMI.2011.2112372).
    86. 86)
      • 24. Huang, X., Paragios, N., Metaxas, D.: ‘Shape registration in implicit spaces using information theory and free form deformations’, IEEE Trans. Pattern Anal. Mach. Intell., 2006, 28, (8), pp. 13031318 (doi: 10.1109/TPAMI.2006.171).
    87. 87)
      • 16. Paragios, N., Rousson, M., Ramesh, V.: ‘Matching distance functions: a shape-to-area variational approach for global-to-local registration’. Proc. Seventh European Conf. Computer Vision, 2002, vol. 2351, pp. 775789.
    88. 88)
      • 52. Lagarias, J.C., Reeds, J.A., Wright, M.H., Wright, P.E.: ‘Convergence properties of the nelder-mead simplex method in low dimensions’, SIAM J. Optim., 1998, 9, (1), pp. 112147 (doi: 10.1137/S1052623496303470).
    89. 89)
      • 29. Tsechpenakis, G., Chatzis, S.P.: ‘Deformable probability maps: probabilistic shape and appearance-based object segmentation’, Comput. Vis. Image Underst., 2011, 115, pp. 11571169 (doi: 10.1016/j.cviu.2010.09.010).
    90. 90)
      • 19. Stegmann, M.B.: ‘Active appearance models: theory, extensions, and cases’, Master thesis, Technical University of Denmark, 2000.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cvi.2012.0226
Loading

Related content

content/journals/10.1049/iet-cvi.2012.0226
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading