access icon free Imaging spectroscopy for scene analysis: challenges and opportunities

In this study, the authors explore the opportunities, application areas and challenges involving the use of imaging spectroscopy as a means for scene understanding. This is important, since scene analysis in the scope of imaging spectroscopy involves the ability to robustly encode material properties, object composition and concentrations of primordial components in the scene. The combination of spatial and compositional information opens-up a vast number of application possibilities. For instance, spectroscopic scene analysis can enable advanced capabilities for surveillance by permitting objects to be tracked based on material properties. In computational photography, images may be enhanced taking into account each specific material type in the scene. For food security, health and precision agriculture it can be the basis for the development of diagnostic and surveying tools which can detect pests before symptoms are apparent to the naked eye. This combination of a broad domain of application with the use of key technologies makes the use of imaging spectroscopy a worthwhile opportunity for researchers in the areas of computer vision and pattern recognition.

Inspec keywords: spectroscopy; image colour analysis; natural scenes

Other keywords: material properties; computer vision; imaging spectroscopy; pattern recognition; plant health; precision agriculture; object composition; object tracking; computational photography; primordial component concentrations; spectroscopic scene analysis; food security; compositional information; spatial information

Subjects: Computer vision and image processing techniques; Optical, image and video signal processing

References

    1. 1)
      • 54. Atkinson, G., Hancock, E.R.: ‘Recovery of surface height using polarization from two views’. CAIP, 2005, pp. 162170.
    2. 2)
      • 39. Khuwuthyakorn, P., Robles-Kelly, A., Zhou, J.: ‘An affine invariant hyperspectral texture descriptor based upon heavy-tailed distributions and Fourier analysis’. Joint IEEE Int. Workshop on Object Tracking and Classification in and Beyond the Visible Spectrum, 2009, pp. 112119.
    3. 3)
      • 34. Stokman, H.M.G., Gevers, T.: ‘Detection and classification of hyper-spectral edges’. British Machine Vision Conf., 1999.
    4. 4)
      • 33. Shokoufandeh, A., Dickinson, S.J., Siddiqi, K., Zucker, S.W.: ‘Indexing using a spectral encoding of topological structure’. Proc. Computer Vision and Pattern Recognition, 1998, pp. 491497.
    5. 5)
      • 30. Torrance, K., Sparrow, E.: ‘Theory for off-specular reflection from roughened surfaces’, J. Opt. Soc. Am., 1967, 57, (9), pp. 11051112 (doi: 10.1364/JOSA.57.001105).
    6. 6)
      • 10. Chang, J.Y., Lee, K.M., Lee, S.U.: ‘Shape from shading using graph cuts’. Proc. Int. Conf. Image Processing, 2003.
    7. 7)
      • 58. Navalpakkam, V., Itti, L.: ‘Search goal tunes visual features optimally’, Neuron, 2007, 53, (4), pp. 605617 (doi: 10.1016/j.neuron.2007.01.018).
    8. 8)
      • 31. Varma, M., Ray, D.: ‘Learning the discriminative powerinvariance trade-off’. Int. Conf. Comput. Vis., 2007.
    9. 9)
      • 6. Huynh, C.P., Robles-Kelly, A., Hancock, E.R.: ‘Shape and refractive index recovery from single-view polarisation images’. IEEE Conf. Comput. Vis. and Pattern Recognition, 2010.
    10. 10)
      • 3. Fu, Z., Robles-Kelly, A.: ‘Discriminant absorption feature learning for material classification’, IEEE Trans. Geosci. Remote Sens., 2011, 49, (5), pp. 15361556 (doi: 10.1109/TGRS.2010.2086462).
    11. 11)
      • 24. Horn, B.K.P., Brooks, M.J.: ‘Shape from shading’ (MIT Press, 1989).
    12. 12)
      • 9. Healey, G., Slater, D.: ‘Invariant recognition in hyperspectral images’. IEEE Conf. Computer Vision and Pattern Recognition, 1999, pp. 14381443.
    13. 13)
      • 21. Clark, R., Swayze, G., Livo, K., et al: ‘Imaging spectroscopy: Earth and planetary remote sensing with the usgs tetracorder and expert system’, J. Geophys. Res., 2003, 108, (5), pp. 144.
    14. 14)
      • 38. Huynh, C.P., Robles-Kelly, A.: ‘A nurbs-based spectral reflectance descriptor with applications in computer vision and pattern recognition’. IEEE Conf. Computer Vision and Pattern Recognition, 2008.
    15. 15)
      • 52. Vasconcelos, N.: ‘On the efficient evaluation of probabilistic similarity functions for image retrieval’, IEEE Trans. Inf. Theory, 2004, 50, (7), pp. 14821496 (doi: 10.1109/TIT.2004.830760).
    16. 16)
      • 36. Fu, Z., Caelli, T., Liu, N., Robles-Kelly, A.: ‘Boosted band ratio feature selection for hyperspectral image classification’, Proc. Int. Conf. Pattern Recognit., 2006, 1, pp. 10591062.
    17. 17)
      • 1. Raskar, R., Tumblin, J., Mohan, A., Agrawal, A., Li, Y.: ‘Computational photography’. Proc. Eurographics: State of the Art Report STAR, 2006.
    18. 18)
      • 63. Li, S.Z., Chu, R., Liao, S., Zhang, L.: ‘Illumination invariant face recognition using nearinfrared images’, IEEE Trans. Pattern Anal. Mach. Intell., 2007, 29, pp. 627639 (doi: 10.1109/TPAMI.2007.1014).
    19. 19)
      • 12. Jolliffe, I.T.: ‘Principal component analysis’ (Springer, 2002).
    20. 20)
      • 5. Kim, S.J., Zhuo, S., Deng, F., Fu, C.W., Brown, M.: ‘Interactive visualization of hyperspectral images of historical documents’, IEEE Trans. Vis. Graphics, 2010, 16, (6), pp. 14411448 (doi: 10.1109/TVCG.2010.172).
    21. 21)
      • 19. Sunshine, J., Pieters, C.M., Pratt, S.F.: ‘Deconvolution of mineral absorption bands: an improved approach’, J. Geophys. Res., 1990, 95, (B5), pp. 69556966 (doi: 10.1029/JB095iB05p06955).
    22. 22)
      • 46. Yuhas, R.H., Goetz, A.F.H., Boardman, J.W.: ‘Discrimination among semiarid landscape endmembers using the spectral angle mapper SAM algorithm’. Summaries of the Third Annual JPL Airborne Geoscience Workshop, 1992, pp. 147149.
    23. 23)
      • 17. Dundar, M., Landgrebe, D.: ‘Toward an optimal supervised classifier for the analysis of hyperspectral data’, IEEE Trans. Geosci. Remote Sens., 2004, 42, (1), pp. 271277 (doi: 10.1109/TGRS.2003.817813).
    24. 24)
      • 42. Stainvas, I., Lowe, D.: ‘A generative model for separating illumination and reflectance from images’, J. Mach. Learn. Res., 2003, 4, pp. 14991519.
    25. 25)
      • 14. Jimenez, L., Landgrebe, D.: ‘Hyperspectral data analysis and feature reduction via projection pursuit’, IEEE Trans. Geosci. Remote Sens., 1999, 37, (6), pp. 26532667 (doi: 10.1109/36.803413).
    26. 26)
      • 61. Torr, P., Murray, D.W.: ‘The development and comparison of robust methods for estimating the fundamental matrix’, Int. J. Comput. Vis., 1997, 24, pp. 271300 (doi: 10.1023/A:1007927408552).
    27. 27)
      • 7. Fu, Z., Robles-Kelly, A.: ‘Milis: multiple instance learning with instance selection’. IEEE Trans. Pattern Anal. Mach. Intell., 2011, 33, (5), pp. 958977.
    28. 28)
      • 60. Cootes, T., Taylor, C., Cooper, D., Graham, J.: ‘Active shape models – their training and application’, Comput. Vis. Image Underst., 1995, 61, (1), pp. 3859 (doi: 10.1006/cviu.1995.1004).
    29. 29)
      • 18. Scholkopf, B., Smola, A.J.: ‘Learning with kernels: support vector machines, regularization, optimization, and beyond’ (MIT Press, 2001).
    30. 30)
      • 41. Bergman, M.: ‘Some unmixing problems and algorithms in spectroscopy and hyperspectral imaging’. Proc. 35th Applied Imagery and Pattern Recognition Workshop, 2006.
    31. 31)
      • 26. Horn, B.K.P., Brooks, M.J.: ‘The variational approach to shape from shading’, CVGIP, 1986, 33, (2), pp. 174208.
    32. 32)
      • 8. Huynh, C.P., Robles-Kelly, A.: ‘Hyperspectral imaging for skin recognition and biometrics’. Int. Conf. Image Processing, 2010.
    33. 33)
      • 59. Berengolts, A., Lindenbaum, M.: ‘On the performance of connected components grouping’, Int. J. Comput. Vis., 2001, 41, (3), pp. 195216 (doi: 10.1023/A:1011108121495).
    34. 34)
      • 29. Vernold, C.L., Harvey, J.E.: ‘A modified Beckmann–Kirchoff scattering theory for nonparaxial angles’. Scattering and Surface Roughness, number 3426 in Proc. SPIE, 1998, pp. 5156.
    35. 35)
      • 48. Sivic, J., Russell, B., Efros, A., Zisserman, A., Freeman, W.: ‘Discovering objects and their location in images’. Int. Conf. Comput. Vis., 2005, I, pp. 370377.
    36. 36)
      • 28. Beckmann, P., Spizzochino, A.: ‘The scattering of electromagnetic waves from rough surfaces’ (Pergamon, New York, 1963).
    37. 37)
      • 62. Shapiro, L., Brady, J.M.: ‘Feature-based correspondance – an eigenvector approach’, Image Vis. Comput., 1992, 10, pp. 283288 (doi: 10.1016/0262-8856(92)90043-3).
    38. 38)
      • 57. Rensink, R.A.: ‘The dynamic representation of scenes’, Vis. Cogn., 2000, 7, pp. 1742 (doi: 10.1080/135062800394667).
    39. 39)
      • 56. Drbohlav, O., Sára, R.: ‘Unambigous determination of shape from photometric stereo with unknown light sources’. Int. Conf. Computer Vision, 2001, pp. 581586.
    40. 40)
      • 53. Rahmann, S., Canterakis, N.: ‘Reconstruction of specular surfaces using polarization imaging’, IEEE Conf. Comput. Vis. Pattern Recognit., 2001, 1, pp. 149155.
    41. 41)
      • 16. Mika, S., Ratsch, G., Weston, J., Scholkopf, B., Muller, K.: ‘Fisher discriminant analysis with kernels’. IEEE Neural Networks for Signal Processing Workshop, 1999, pp. 4148.
    42. 42)
      • 4. Huynh, C.P., Robles-Kelly, A.: ‘A solution of the dichromatic model for multispectral photometric invariance’, Int. J. Comput. Vis., 2010, 90, (1), pp. 127 (doi: 10.1007/s11263-010-0333-y).
    43. 43)
      • 47. Nister, D., Stewenius, H.: ‘Scalable recognition with a vocabulary tree’. Comp. Vis. Pattern Recognit., 2006, II, 21612168.
    44. 44)
      • 11. Landgrebe, D.: ‘Hyperspectral image data analysis’, IEEE Signal Process. Mag., 2002, 19, pp. 1728 (doi: 10.1109/79.974718).
    45. 45)
      • 45. Huynh, C.P., Robles-Kelly, A.: ‘A probabilistic approach to spectral unmixing’. S + SSPR 2010, 2010, pp. 44353.
    46. 46)
      • 22. Clark, R.N., Gallagher, A.J., Swayze, G.A.: ‘Material absorption band depth mapping of imaging spectrometer data using a complete band shape least-squares fit with library reference spectra’. Proc. Second Airborne Visible/Infrared Imaging Spectrometer Workshop, 1990, pp. 176186.
    47. 47)
      • 20. Hapke, B.: ‘Theory of reflectance and emittance spectroscopy’ (Cambridge University Press, 1993).
    48. 48)
      • 23. Wyszecki, G., Stiles, W.S.: ‘Color science: concepts and methods, quantitative data and formulae’ (Wiley, 2000).
    49. 49)
      • 50. Winder, S., Brown, M.: ‘Learning local image descriptors’. IEEE Conf. Computer Vision and Pattern Recognition, 2007.
    50. 50)
      • 37. Fu, Z., Tan, R., Caelli, T.: ‘Specular free spectral imaging using orthogonal subspace projection’, Proc. Intl. Conf. Pattern Recognit., 2006, 1, pp. 812815.
    51. 51)
      • 43. Klinker, G., Shafer, S., Kanade, T.: ‘A physical approach to color image understanding’, Int. J. Comput. Vis., 1990, 4, (1), pp. 738 (doi: 10.1007/BF00137441).
    52. 52)
      • 40. Doretto, G., Chiuso, A., Wu, Y., Soatto, S.: ‘Dynamic textures’, Int. J. Comput. Vis., 2003, 51, (2), pp. 91109 (doi: 10.1023/A:1021669406132).
    53. 53)
      • 13. Fukunaga, K.: ‘Introduction to statistical pattern recognition’ (Academic Press, 1990, 2nd edn.).
    54. 54)
      • 27. Zheng, Q., Chellappa, R.: ‘Estimation of illuminant direction, albedo, and shape from shading’, IEEE Trans. Pattern Anal. Mach. Intell., 1991, 13, (7), pp. 680702 (doi: 10.1109/34.85658).
    55. 55)
      • 35. Angelopoulou, E.: ‘Objective colour from multispectral imaging’. European Conf. Comput. Vis., 2000, pp. 359374.
    56. 56)
      • 44. Lennon, M., Mercier, G., Mouchot, M.C., Hubert-moy, L.: ‘Spectral unmixing of hyperspectral images with the independent component analysis and wavelet packets’. Proc. Int. Geoscience and Remote Sensing Symp., 2001.
    57. 57)
      • 32. Sengupta, K., Boyer, K.L.: ‘Using geometric hashing with information theoretic clustering for fast recognition from a large cad modelbase’. IEEE Int. Symp. Computer Vision, 1995, pp. 151156.
    58. 58)
      • 51. Nilsback, M.E., Zisserman, A.: ‘A visual vocabulary for flower classification’. Comp. Vision and Pattern Recognition, 2006, II, pp. 14471454.
    59. 59)
      • 49. Chum, O., Philbin, J., Sivic, J., Isard, M., Zisserman, A.: ‘Total recall: automatic query expansion with a generative feature model for object retrieval’. Int. Conf. Computer Vision, 2007.
    60. 60)
      • 2. Huynh, C.P., Robles-Kelly, A.: ‘Simultaneous photometric invariance and shape recovery’. IEEE Int. Conf. Computer Vision, 2009.
    61. 61)
      • 15. Schölkopf, B., Smola, A.J., Müller, K.-R.: ‘Kernel principal component analysis’. Advances in Kernel methods: support vector learning, 1999, pp. 327352.
    62. 62)
      • 55. Atkinson, G., Hancock, E.R.: ‘Multi-view surface reconstruction using polarization’. Int. Conf. Computer Vision, 2005, pp. 309316.
    63. 63)
      • 25. Ikeuchi, K., Horn, B.K.P.: ‘Numerical shape from shading and occluding boundaries’, Artif. Intell., 1981, 17, (1–3), pp. 141184 (doi: 10.1016/0004-3702(81)90023-0).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cvi.2010.0205
Loading

Related content

content/journals/10.1049/iet-cvi.2010.0205
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading