Modelling visual saliency using degree centrality

Access Full Text

Modelling visual saliency using degree centrality

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Computer Vision — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Visual attention is an indispensable component of complex vision tasks. A multi-scale, complex network-based approach for determining visual saliency is described. It uses degree centrality (conceptually and computationally the simplest among all the centrality measures) over a network of image regions to form a saliency map. The regions used in the network are multiscale in nature with scale selected automatically. Experimental evaluation establishes the superiority of the method over existing saliency methods, even in noisy environments.

Inspec keywords: computer vision

Other keywords: visual saliency modelling; complex vision tasks; complex network-based approach; degree centrality; visual attention

Subjects: Computer vision and image processing techniques; Optical, image and video signal processing

References

    1. 1)
      • L. Itti , C. Koch . Feature combination strategies for saliency-based visual attention systems. J. Electron. Imag. , 1 , 161 - 169
    2. 2)
      • Schaefer, G., Stich, M.: `UCID – an uncompressed colour image database', Proc. SPIE Storage and Retrieval Methods and Applications for Multimedia, 2004, 5307, p. 472–480.
    3. 3)
      • Ouerhani, N., Hugli, H.: `Computing visual attention form scene depth', Proc. 15th Int. Conf. on Pattern Recognition, September 2000, 1, p. 375–378.
    4. 4)
      • T. Kadir , M. Brady . Saliency, scale and image description. Int. J. Comput. Vis. , 2 , 83 - 105
    5. 5)
      • Simoncelli, E.P., Freeman, W.T.: `The steerable pyramid: a flexible architecture for multi-scale derivative computation', Proc. IEEE Int. Conf. on Image Processing, 1995, p. III-444–447.
    6. 6)
      • C. Constantinidis , M.A. Steinmetz . Posterior parietal cortex automatically encodes the location of salient stimuli. J. Neurosci. , 1 , 233 - 238
    7. 7)
      • S.M. Pizer , D. Eberly , D.S. Fritsch . Zoom-invariant vision of figural shape: the mathematics of cores. Comput. Vis. Image Understanding , 1 , 55 - 71
    8. 8)
      • L.W. Renninger , J. Coughlan , P. Verghese , J. Malik . An information maximization model of eye movements. Adv. Neural Inf. Process. Syst.
    9. 9)
      • Ma, Y.-F., Zhang, H.-J.: `Contrast-based image attention analysis by using fuzzy growing', Proc. 11th ACM Int. Conf. on Multimedia, November 2003, p. 374–381.
    10. 10)
      • R.A. Young . The gaussian derivative model for spatial vision: l. retinal mechanisms. Spatial Vis. , 4 , 273 - 293
    11. 11)
      • G. Sabidussi . The centrality index of a graph. Psychometrica , 581 - 603
    12. 12)
      • T. Sato , A. Murthy , K.G. Thompson , J.D. Schall . Search efficiency but not response interference affects visual selection in Frontal eye field. Neuron , 583 - 591
    13. 13)
      • M.Z. Aziz , B. Mertsching . Fast and robust generation of feature maps for region-based visual attention. IEEE Trans. Image Process. , 5 , 633 - 644
    14. 14)
      • Hu, Y., Rajan, D., Chia, L.-T.: `Robust subspace analysis for detecting visual attention regions in images', Proc. 13th Ann. ACM Int. Conf. on Multimedia, November 2005, p. 716–724.
    15. 15)
      • C. Koch , S. Ullman . Shifts in selective visual attention: towards the underlying neural circuitry. Human Neurobiology , 219 - 227
    16. 16)
      • Hu, Y., Rajan, D., Chia, L.-T.: `Adaptive local context suppression of multiple cues for salient visual attention detection', Proc. IEEE Int. Conf. on Multimedia and Expo., July 2005, p. 346–349.
    17. 17)
      • Z. Yu , H.-S. Wong . A rule based technique for extraction of visual attention regions based on real-time clustering. IEEE Trans. Multimedia , 4 , 766 - 784
    18. 18)
      • J.K. Tsotsos . Analyzing vision at the complexity level. Behav. Brain Sci. , 423 - 469
    19. 19)
      • A.M. Treisman , G. Gelade . A feature-integration theory of attention. Cogn. Psychol. , 1 , 97 - 136
    20. 20)
      • J. Harel , C. Koch , P. Perona . Graph-based visual saliency. Adv. Neural Inf. Process. Syst.
    21. 21)
      • Liu, H., Jiang, S., Huang, Q., Xu, C., Gao, W.: `Region-based visual attention analysis with its application in image browsing on small displays', Proc. 15th Int. Conf. on Multimedia, September 2007, p. 305–308.
    22. 22)
      • L. Itti , P. Baldi . Bayesian surprise attracts human attention. Adv. Neural Inf. Process. Syst.
    23. 23)
      • Osberger, W., Maeder, A.J.: `Automatic identification of perceptually important regions in an image', Proc. 14th Int. Conf. on Pattern Recognition, August 1998, 1, p. 701–704.
    24. 24)
      • Hu, Y., Rajan, D., Chia, L.-T.: `Scale adaptive visual attention detection by subspace analysis', Proc. 15th Int. Conf. on Multimedia, September 2007, p. 525–528.
    25. 25)
      • J.K. Tsotsos , S.M. Culhane , W.Y.K. Wai , Y. Lai , N. Davis , F. Nuflo . Modeling visual attention via selective tuning. Artif. Intel. , 507 - 547
    26. 26)
      • Cheoi, K., Lee, Y.: `Detecting perceptually important regions in an image based on human visual attention characteristic', Proc. Joint IAPR Int. Workshop on Structural, Syntactic, and Statistical Pattern Recognition, 2002, p. 329–338.
    27. 27)
      • Hou, X., Zhang, L.: `Saliency detection: a spectral residual approach', Proc. IEEE Conf. on Computer Vision and Pattern Recognition, June 2007, p. 1–8.
    28. 28)
      • M.W. Cannon , S.C. Fullenkamp . A model for inhibitory lateral interaction effects in perceived contrast. Vis. Res. , 8 , 1115 - 1125
    29. 29)
      • Greenspan, H., Belongie, S., Goodman, R., Perona, P., Rakshit, S., Anderson, C.H.: `Overcomplete steerable pyramid filters and rotation invariance', Proc. IEEE Computer Society Conf. on Computer Vision and Pattern Recognition, June 1994, p. 222–228.
    30. 30)
      • Kohonen, T.: `A computational model of visual attention', Proc. Int. J. Conf. on Neural Networks, July 2003, 4, p. 3238–3243.
    31. 31)
      • Courty, N., Marchand, E., Arnaldi, B.: `A new application for saliency maps: synthetic vision of autonomous actors', Proc. Int. Conf. on Image Processing, September 2003, 3, p. III-1065–1068.
    32. 32)
      • N.D.B. Bruce . Features that draw visual attention: an information theoretic perspective. Neurocomputing , 125 - 133
    33. 33)
      • L. Itti , C. Koch , E. Niebur . A model of saliency-based visual attention for rapid scene analysis. IEEE Trans. Pattern Analysis and Machine Intelligence , 11 , 1254 - 1259
    34. 34)
      • W. Kienzle , F.A. Wichmann , B. Scholkopf , M.O. Franz . A non-parametric approach to bottom-up visual saliency. Adv. Neural Inf. Process. Syst.
    35. 35)
      • N.D.B. Bruce , J.K. Tsotsos . Saliency based on information maximization. Adv. Neural Inf. Process. Syst.
    36. 36)
      • Begum, M., Mann, G.K.I., Gosine, R.G.: `A biologically inspired bayesian model of visual attention for humanoid robots', Proc. Sixth IEEE-RAS Int. Conf. on Humanoid Robots, December 2006, p. 587–592.
    37. 37)
      • Maki, A., Nordlund, P., Eklundh, J.-O.: `A computational model of depth-based attention', Proc. 13th Int. Conf. on Pattern Recognition, August 1996, 4, p. 734–739.
    38. 38)
      • Y. Sun , R. Fisher . Object-based visual attention for computer vision. Artifi. Intell. , 77 - 123
    39. 39)
      • Stentiford, F.W.M.: `An evolutionary programming approach to the simulation of visual attention', Proc. 2001 Congress on Evolutionary Computation, May 2001, 2, p. 851–858.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cvi.2009.0067
Loading

Related content

content/journals/10.1049/iet-cvi.2009.0067
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading