Height estimation from monocular image sequences using dynamic programming with explicit occlusions

Access Full Text

Height estimation from monocular image sequences using dynamic programming with explicit occlusions

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Computer Vision — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

In this study, the authors propose a novel algorithm to estimate the heights of objects from monocular aerial images taken from mobile platforms such as unmanned aerial vehicles and small airplanes. Sequential images captured by a single camera mounted on a mobile platform contain 3D information of objects. In this study, the authors propose to use illumination normalisation to reduce illumination variations and to use at least two objects with known distances to accurately estimate the camera focal length. The authors also propose a novel stereo matching algorithm using dynamic programming with explicit occlusion modelling to recover depth information in occluded regions and to preserve depth discontinuity. As a result, the authors are able to reliably estimate the heights of objects in or close to power line corridors. Our experiments show that the proposed algorithm can estimate the heights of trees and power poles from aerial images with average errors of 1.8 and 1.1 m, respectively, when the flight height is in the range between 230 and 280 m above ground level.

Inspec keywords: dynamic programming; image matching; stereo image processing; height measurement; image sequences

Other keywords: unmanned aerial vehicles; small airplanes; illumination normalisation; height estimation; mobile platforms; explicit occlusions; monocular image sequences; stereo matching algorithm; dynamic programming; occlusion modelling; camera focal length estimation

Subjects: Spatial variables measurement; Optical, image and video signal processing; Optimisation techniques; Computer vision and image processing techniques; Optimisation techniques

References

    1. 1)
      • Banks, J., Bennamoun, M., Corke, P.: `Non-parametric techniques for fast and robust stereo matching', IEEE TENCON – Speech and Image Technologies for Computing and Telecommunications, 1997, p. 365–368.
    2. 2)
      • O.Y. Boykov , R. Zabih . Fast approximate energy minimization via graph cuts. IEEE Trans. Pattern Anal. Mach. Intell. , 11 , 1222 - 1239
    3. 3)
      • S. Cox , S.L. Hingorani , B.M. Maggs . A maximum likelihood stereo algorithm. CVIU , 3 , 542 - 567
    4. 4)
      • C. Sun , R. Jones , H. Talbot . Measuring the distance of vegetation from powerlines using stereo vision. J. Photogramm. Remote Sens. , 269 - 283
    5. 5)
      • T. Kanade , M. Okutomi . A stereo matching algorithm with an adaptive window: theory and experiment. IEEE Trans. Pattern Anal. Mach. Intell. , 9 , 920 - 932
    6. 6)
      • Kim, J.C., Lee, K.M., Choi, B.T., Lee, S.U.: `A dense stereo matching using two-pass dynamic programming with generalized ground control points', IEEE Int. Conf. on Computer Vision and Pattern Recognition, 2005, 2, p. 1075–1082.
    7. 7)
      • S. Birchfield , C. Tomasi . A pixel dissimilarity measure that is insensitive to image sampling. IEEE Trans. Pattern Anal. Mach. Intell. , 4 , 401 - 406
    8. 8)
      • R.I. Hartley . Theory and practice of projective rectification. Int. J. Comput. Vis. , 2 , 115 - 127
    9. 9)
      • J. Suáreza , C. Ontiverosa , S. Smithb , S. Snapec . Use of airborne lidar and aerial photography in the estimation of individual tree heights in forestry. Comput. Geosci. , 253 - 262
    10. 10)
      • C. Sun . Fast stereo matching using rectangular subregioning and 3d maximum-surface techniques. Int. J. Comput. Vis. , 99 - 117
    11. 11)
      • Clode, S., Rottensteiner, F.: `Classification of trees and powerlines from medium resolution airborne laserscanner data in urban environments', APRS Workshop on Digital Image Computing, February 2005, p. 191–196.
    12. 12)
      • M. Gong , Y.H. Yang . Real-time stereo matching using orthogonal reliability-based dynamic programming. IEEE Trans. Image Process. , 3 , 879 - 884
    13. 13)
      • D. Scharstein , R. Szeliski . A taxonomy and evaluation of dense two-frame stereo correspondence algorithms. Int. J. Comput. Vis. , 7 - 42
    14. 14)
      • S. Ashidate . Development of a helicopter-mounted eye-safe laser radar system for distance measurement between power transmission lines and nearby trees. IEEE Trans. Power Deliv. , 2 , 644 - 648
    15. 15)
      • J. Sun , H. yeung Shum , N. ning Zheng . Stereo matching using belief propagation. IEEE Trans. Pattern Anal. Mach. Intell. , 787 - 800
    16. 16)
      • Gimel'farb, G.: `Stereo terrain reconstruction by dynamic programming', CITR-TR-21, Technical, June 1998.
    17. 17)
      • I. Yoon . Adaptive support weight approach for correspondence search. IEEE Trans. Pattern Anal. Mach. Intell. , 4 , 650 - 656
    18. 18)
      • Bolles, H., Hannah, M.J.: `The jisct stereo evaluation', DARPA Image Understanding Workshop, 1993, p. 263–274.
    19. 19)
      • Veksler, O.: `Stereo correspondence by dynamic programming on a tree', IEEE Int. Conf. on Computer Vision and Pattern Recognition, 2005, 2, p. 384–390.
    20. 20)
      • P.N. Belhumeur . A bayesian approach to binocular stereopsis. Int. J. Comput. Vis. , 3 , 237 - 260
    21. 21)
      • J. Zimmerman , S. Pizer , E. Staab , J. Perry , W. McCartney , B. Brenton . An evaluation of the effectiveness of adaptive histogram equalization for contrast enhancement. IEEE Trans. Medical Image , 4 , 304 - 312
    22. 22)
      • J. Holmgren , M. Nilsson , H. Olsson . Estimation of tree height and stem volume on plots using airborne laser scanning. Forest Sci. , 3 , 191 - 196
    23. 23)
      • C.L. Zitnick , T. Kanade . A cooperative algorithm for stereo matching and occlusion detection. IEEE Trans. Pattern Anal. Mach. Intell. , 7 , 675 - 684
    24. 24)
      • Y. Boykov , V. Kolmogorov . An experimental comparison of min-cut/max-flowalgorithms for energyminimization in vision. IEEE Trans. Pattern Anal. Mach. Intell. , 1124 - 1137
    25. 25)
      • Zabih, R., Woofill, J.: `Non-parametric local transforms for computing visual correspondence', European Conf. on Computer Vision (ECCV), 1994, p. 151–158.
    26. 26)
      • Cai, J.: `Fast stereo matching: coarser to finer with selective updating', Int. Conf. on Image and Vision Computing, 2007, New Zealand, p. 266–270.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cvi.2009.0063
Loading

Related content

content/journals/10.1049/iet-cvi.2009.0063
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading