Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

Curvature-based approach for multi-scale feature extraction from 3D meshes and unstructured point clouds

Curvature-based approach for multi-scale feature extraction from 3D meshes and unstructured point clouds

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Computer Vision — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

A framework for extracting salient local features from 3D models is presented in this study. In the proposed method, the amount of curvature at a surface point is specified by a positive quantitative measure known as the curvedness. This value is invariant to rigid body transformation such translation and rotation. The curvedness at a surface position is calculated at multiple scales by fitting a manifold to the local neighbourhoods of different sizes. Points corresponding to local maxima and minima of curvedness are selected as suitable features and a confidence measure of each keypoint is also calculated based on the deviation of its curvedness from the neighbouring values. The advantage of this framework is its applicability to both 3D meshes and unstructured point clouds. Experimental results on a different number of models are shown to demonstrate the effectiveness and robustness of our approach.

References

    1. 1)
      • Novatnack, J., Nishino, K.: `Scale-dependent 3D geometric features', Proc. IEEE Int'l Conf. on Computer Vision, October 2007.
    2. 2)
      • Desbrun, M., Meyer, M., Schöder, P., Barr, P.: `Implicit fairing of arbitrary meshes using diffusion and curvature flow', SIGGRAPH 99, 1999.
    3. 3)
      • A. Mian , M. Bennamoun , R. Owens . A novel representation and feature matching algorithm for automatic pairwise registration of range images. IJCV , 1 , 19 - 40
    4. 4)
      • Mian, A.: ‘A.S. Mian's 3D models’, http://people.csse.uwa.edu.au/ajmal/3Dmodeling.html.
    5. 5)
      • Frome, A., Huber, D., Kolluri, R., Bulow, T., Malik, J.: `Recognizing objects in range data using regional point descriptors', Proc. European on Conf. Computer Vision, May 2004.
    6. 6)
      • J. Koenderink . The structure of images. Biol. Cybern. , 363 - 370
    7. 7)
      • D. Colbry , G. Stockman . Real-time identification using a canonical face depth map. IET Comput. Vis. , 2 , 74 - 92
    8. 8)
      • Flint, A., Dick, A., van den Hengel, A.: `Thrift: local 3D structure recognition', Proc. DICTA 2007, December 2007, p. 182–188.
    9. 9)
      • Standford Computer Graphics Laboratory: ‘Standford 3D scanning repository’, http://www-graphics.stanford.edu/data/3Dscanrep/.
    10. 10)
      • T. Lindeberg . (1994) Scale-space theory in computer vision.
    11. 11)
      • Pauly, M., Keiser, R., Gross, M.: `Multi-scale feature extraction on point-sampled surface', Proc. Eurograph. 2003, 2003.
    12. 12)
      • P. Lindstrom , G. Turk . Evaluation of memoryless simplification. IEEE Trans. Visual. Comp. Graph. , 98 - 115
    13. 13)
      • F. Mokhatarian , N. Khalili , P. Yuen . Multi-scale free-form 3D object recognition using 3D models. Image Vis. Comput. , 271 - 281
    14. 14)
      • S. Yamany , A. Farag . Surface signatures: an orientation independent free-form surface representation scheme for the purpose of objects registration and matching. IEEE Trans. Pattern Anal. Mach. Intell. , 8 , 1105 - 11 120
    15. 15)
      • A. Gray . (1993) Modern differential geometry of curves and surfaces.
    16. 16)
      • Taubin, G.: `A signal processing approach to fair surface design', Siggraph 95, 1995.
    17. 17)
      • B. Matei , Y. Shan , H. Sawhney , Y. Tan , R. Kumar , D. Huber , M. Hebert . Rapid object indexing using locality sensitive hashing and joint 3D-signature space estimation. IEEE Trans. Pattern Anal. Mach. Intell. , 7 , 674 - 686
    18. 18)
      • D. Lowe . Distinctive image features from scale-invariant keypoints. Int'l J. Comput. Vis. , 2 , 91 - 110
    19. 19)
      • A. Jagannathan , E. Miller . Three-dimensional surface mesh segmentation using curvedness-based region growing approach. IEEE Trans. Pattern Anal. Mach. Intell. , 12 , 2195 - 2204
    20. 20)
      • Unnikrishnan, R., Hebert, M.: `Multi-scale interest regions from unorganized point clouds', Workshop on Search in 3D, June 2008.
    21. 21)
      • Li, X., Guskov, I.: `Multi-scale features for approximate alignment of point-based surfaces', Proc. Eurographics Symp. on Geometry Proc., 2005.
    22. 22)
      • Witkin, A.: `Scale-space filtering', Proc. IJCAI, 1983, p. 1019–1022.
    23. 23)
      • C. Dorai , A. Jain . COSMOS: a representation scheme for 3D free-form objects. IEEE Trans. Pattern Anal. Mach. Intell. , 10 , 1115 - 1130
    24. 24)
      • A. Johnson , M. Hebert . Using spin images for efficient object recognition in cluttered 3D scenes. IEEE Trans. Pattern Anal. Mach. Intell. , 5 , 674 - 686
    25. 25)
      • J.J. Koenderink , A.J. Van Doorn . Surface shape and curvature scales. Image Vis. Comput. , 557 - 565
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cvi.2009.0044
Loading

Related content

content/journals/10.1049/iet-cvi.2009.0044
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address