http://iet.metastore.ingenta.com
1887

Band selection for hyperspectral imagery using affinity propagation

Band selection for hyperspectral imagery using affinity propagation

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Computer Vision — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Hyperspectral imagery generally contains enormous amounts of data because of hundreds of spectral bands. Band selection is often adopted to reduce computational cost and accelerate knowledge discovery and other tasks such as subsequent classification. An exemplar-based clustering algorithm termed affinity propagation for band selection is proposed. Affinity propagation is derived from factor graph, and operates by initially considering all data points as potential cluster centres (exemplars) and then exchanging messages between data points until a good set of exemplars and clusters emerges. Affinity propagation has been applied to computer vision and bioinformatics, and shown to be much faster than other clustering methods for large data. By combining the information about the discriminative capability of each individual band and the correlation/similarity between bands, the exemplars generated by affine propagation have higher importance and less correlation/similarity. The performance of band selection is evaluated through a pixel image classification task. Experimental results demonstrate that, compared with some popular band selection methods, the bands selected by affinity propagation best characterise the hyperspectral imagery from the pixel classification standpoint.

References

    1. 1)
      • C.-I. Chang . (2003) Hyperspectral imaging: techniques for spectral detection and classification.
    2. 2)
      • S. Kumar , J. Ghosh , M. Crawford . Best-bases feature extraction algorithms for classification of hyperspectral data. IEEE Trans. Geosci. Remote Sens. , 7 , 1368 - 1379
    3. 3)
      • L.O. Jimenez-Rodrguez , E. Arzuaga-Cruz , M. Velez-Reyes . Unsupervised linear feature-extraction methods and their effects in the classification of high-dimensional data. IEEE Trans. Geosci. Remote Sens. , 2 , 469 - 483
    4. 4)
      • B.S. Serpico , L. Bruzzone . A new search algorithm for feature selection in hyperspectral remote sensing images. IEEE Trans. Geosci. Remote Sens. , 7 , 1360 - 1367
    5. 5)
      • I. Guyon , A. Elisseeff . An introduction to variable and feature selection. J. Mach. Learn. Res. , 1157 - 1182
    6. 6)
      • C.-I. Chang , S. Wang . Constrained band selection for hyperspectral imagery. IEEE Trans. Geosci. Remote Sens. , 6 , 1575 - 1585
    7. 7)
      • Dash, M., Liu, H., Yao, J.: `Dimensionality reduction of unsupervised data', Proc. Int. Conf. Tools with Artificial Intelligence, November 1997, p. 532–539.
    8. 8)
      • C.-I. Chang , Q. Du , T.L. Sun , M.L.G. Althouse . A joint band prioritization and band-deccorelation approach to band selection for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. , 6 , 2631 - 2641
    9. 9)
      • Sotoca, J.M., Pla, F.: `Hyperspectral data selection from mutual information between image bands', Proc. SSPR&SPR 2006, August 2006, p. 853–861.
    10. 10)
      • T.M. Cover , J.A. Thomas . (2006) Elements of information theory.
    11. 11)
      • P. Mitra , C.A. Murthy , S.K. Pal . Unsupervised feature selection using feature similarity. IEEE Trans. Pattern Anal. Mach. Intell. , 3 , 301 - 312
    12. 12)
      • A.K. Jain , M.N. Murty , P.J. Flynn . Data clustering: a review. ACM Comput. Surveys , 3 , 264 - 323
    13. 13)
      • A. Martínez-usó , F. Pla , J.M. Sotoca , P. García-sevilla . Clustering-based hyperspectral band selection using information measures. IEEE Trans. Geosci. Remote Sens. , 12 , 4158 - 4171
    14. 14)
      • B.J. Frey , D. Dueck . Clustering by passing messages between data points. Science , 972 - 976
    15. 15)
      • Dueck, D.: `Affinity propagation: clustering data by passing messages', 2009, PhD, University of Toronto.
    16. 16)
      • P.K. Agarwal , C.M. Procopiuc . Exact and approximation algorithms for clustering. Algorithmica , 2 , 201 - 226
    17. 17)
      • F.R. Kschischang , B.J. Frey , H.A. Loeliger . Factor graphs and the sum-product algorithm. IEEE Trans. Inf. Theory , 2 , 498 - 519
    18. 18)
      • J.F. Cardoso . Dependence, correlation and Gaussianity in independent component analysis. J. Mach. Learn. Res. , 12 , 1177 - 1203
    19. 19)
      • Kohavi, R.: `A study of cross-validation and bootstrap for accuracy estimation and model selection', Int. Joint Conf. on Artificial Intelligence, IJCAI, 1995, 2, p. 1137–1143.
    20. 20)
      • C. Goutte , P. Toft , E. Rostrup , F. Nielsen , L. Hansen . On clustering fMRI time series. NeuroImage , 3 , 298 - 310
    21. 21)
      • T. Cover , P. Hart . Nearest neighbor pattern classification. IEEE Trans. Inf. Theory , 1 , 21 - 27
    22. 22)
      • F. Melgani , L. Bruzzone . Classification of hyperspectral remote sensing images with support vector machines. IEEE Trans. Geosci. Remote Sens. , 8 , 1778 - 1790
    23. 23)
      • M. Seeger . Gaussian processes for machine learning. Int. J. Neural Syst. , 2 , 69 - 106
    24. 24)
      • R. Rifkin , A. Klautau . In defense of one-vs-all classification. J. Mach. Learn. Res. , 1 , 101 - 141
    25. 25)
      • ftp://ftp.ecn.purdue.edu/biehl/MultiSpec/92AV3C (original files) and ftp://ftp.ecn.purdue.edu/pub/biehl/PC-MultiSpec/ThyFiles.zip (ground truth).
    26. 26)
      • R. Neher , A. Srivastava . A bayesian mrf framework for labeling terrain using hyperspectral imaging. IEEE Trans. Geosci. Remote Sens. , 6 , 1363 - 1374
    27. 27)
      • http://tlclab.unipv.it/dftc/home.do, accessed 2008.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cvi.2009.0034
Loading

Related content

content/journals/10.1049/iet-cvi.2009.0034
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address