Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

Band selection for hyperspectral imagery using affinity propagation

Band selection for hyperspectral imagery using affinity propagation

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Computer Vision — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Hyperspectral imagery generally contains enormous amounts of data because of hundreds of spectral bands. Band selection is often adopted to reduce computational cost and accelerate knowledge discovery and other tasks such as subsequent classification. An exemplar-based clustering algorithm termed affinity propagation for band selection is proposed. Affinity propagation is derived from factor graph, and operates by initially considering all data points as potential cluster centres (exemplars) and then exchanging messages between data points until a good set of exemplars and clusters emerges. Affinity propagation has been applied to computer vision and bioinformatics, and shown to be much faster than other clustering methods for large data. By combining the information about the discriminative capability of each individual band and the correlation/similarity between bands, the exemplars generated by affine propagation have higher importance and less correlation/similarity. The performance of band selection is evaluated through a pixel image classification task. Experimental results demonstrate that, compared with some popular band selection methods, the bands selected by affinity propagation best characterise the hyperspectral imagery from the pixel classification standpoint.

References

    1. 1)
      • A.K. Jain , M.N. Murty , P.J. Flynn . Data clustering: a review. ACM Comput. Surveys , 3 , 264 - 323
    2. 2)
      • ftp://ftp.ecn.purdue.edu/biehl/MultiSpec/92AV3C (original files) and ftp://ftp.ecn.purdue.edu/pub/biehl/PC-MultiSpec/ThyFiles.zip (ground truth).
    3. 3)
      • B.J. Frey , D. Dueck . Clustering by passing messages between data points. Science , 972 - 976
    4. 4)
      • L.O. Jimenez-Rodrguez , E. Arzuaga-Cruz , M. Velez-Reyes . Unsupervised linear feature-extraction methods and their effects in the classification of high-dimensional data. IEEE Trans. Geosci. Remote Sens. , 2 , 469 - 483
    5. 5)
      • A. Martínez-usó , F. Pla , J.M. Sotoca , P. García-sevilla . Clustering-based hyperspectral band selection using information measures. IEEE Trans. Geosci. Remote Sens. , 12 , 4158 - 4171
    6. 6)
      • T. Cover , P. Hart . Nearest neighbor pattern classification. IEEE Trans. Inf. Theory , 1 , 21 - 27
    7. 7)
      • Sotoca, J.M., Pla, F.: `Hyperspectral data selection from mutual information between image bands', Proc. SSPR&SPR 2006, August 2006, p. 853–861.
    8. 8)
      • C.-I. Chang . (2003) Hyperspectral imaging: techniques for spectral detection and classification.
    9. 9)
      • I. Guyon , A. Elisseeff . An introduction to variable and feature selection. J. Mach. Learn. Res. , 1157 - 1182
    10. 10)
      • R. Neher , A. Srivastava . A bayesian mrf framework for labeling terrain using hyperspectral imaging. IEEE Trans. Geosci. Remote Sens. , 6 , 1363 - 1374
    11. 11)
      • F.R. Kschischang , B.J. Frey , H.A. Loeliger . Factor graphs and the sum-product algorithm. IEEE Trans. Inf. Theory , 2 , 498 - 519
    12. 12)
      • C. Goutte , P. Toft , E. Rostrup , F. Nielsen , L. Hansen . On clustering fMRI time series. NeuroImage , 3 , 298 - 310
    13. 13)
      • http://tlclab.unipv.it/dftc/home.do, accessed 2008.
    14. 14)
      • P.K. Agarwal , C.M. Procopiuc . Exact and approximation algorithms for clustering. Algorithmica , 2 , 201 - 226
    15. 15)
      • Kohavi, R.: `A study of cross-validation and bootstrap for accuracy estimation and model selection', Int. Joint Conf. on Artificial Intelligence, IJCAI, 1995, 2, p. 1137–1143.
    16. 16)
      • B.S. Serpico , L. Bruzzone . A new search algorithm for feature selection in hyperspectral remote sensing images. IEEE Trans. Geosci. Remote Sens. , 7 , 1360 - 1367
    17. 17)
      • M. Seeger . Gaussian processes for machine learning. Int. J. Neural Syst. , 2 , 69 - 106
    18. 18)
      • P. Mitra , C.A. Murthy , S.K. Pal . Unsupervised feature selection using feature similarity. IEEE Trans. Pattern Anal. Mach. Intell. , 3 , 301 - 312
    19. 19)
      • C.-I. Chang , S. Wang . Constrained band selection for hyperspectral imagery. IEEE Trans. Geosci. Remote Sens. , 6 , 1575 - 1585
    20. 20)
      • C.-I. Chang , Q. Du , T.L. Sun , M.L.G. Althouse . A joint band prioritization and band-deccorelation approach to band selection for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. , 6 , 2631 - 2641
    21. 21)
      • J.F. Cardoso . Dependence, correlation and Gaussianity in independent component analysis. J. Mach. Learn. Res. , 12 , 1177 - 1203
    22. 22)
      • S. Kumar , J. Ghosh , M. Crawford . Best-bases feature extraction algorithms for classification of hyperspectral data. IEEE Trans. Geosci. Remote Sens. , 7 , 1368 - 1379
    23. 23)
      • R. Rifkin , A. Klautau . In defense of one-vs-all classification. J. Mach. Learn. Res. , 1 , 101 - 141
    24. 24)
      • T.M. Cover , J.A. Thomas . (2006) Elements of information theory.
    25. 25)
      • Dash, M., Liu, H., Yao, J.: `Dimensionality reduction of unsupervised data', Proc. Int. Conf. Tools with Artificial Intelligence, November 1997, p. 532–539.
    26. 26)
      • F. Melgani , L. Bruzzone . Classification of hyperspectral remote sensing images with support vector machines. IEEE Trans. Geosci. Remote Sens. , 8 , 1778 - 1790
    27. 27)
      • Dueck, D.: `Affinity propagation: clustering data by passing messages', 2009, PhD, University of Toronto.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cvi.2009.0034
Loading

Related content

content/journals/10.1049/iet-cvi.2009.0034
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address