Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

Estimating fibre orientation in spruce using lighting direction

Estimating fibre orientation in spruce using lighting direction

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Computer Vision — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Softwood is almost entirely composed of fibres and its physical properties depend on their orientation. A method is proposed to estimate the average fibre orientation at each pixel in the inspection image. In this study it is shown that finished wood has distinctive reflectance properties that are a consequence of the microstructure of the wood surface. If the fibres lie parallel to the image plane these properties can be used to estimate fibre orientation. It is argued that the reflectance behaviour reported in this study generalises to a wide range of materials with directional microstructures.

References

    1. 1)
      • Oren, M., Nayar, S.K.: `Generalization of Lambert's reflectance model', ACM 21st Annual Conf. Computer Graphics and Interactive Techniques (SIGGRAPH), July 1994, p. 239–246.
    2. 2)
      • D.A. Butler , C.C. Brunner , J.W. Funck . Wood-surface feature classification using extended-color information. Holz als Roh- und Werkstoff , 6 , 475 - 482
    3. 3)
      • Nyström, J., Grundberg, S.: `Automatic measurement of spiral grain and its impact on twist after drying', Proc. ‘Fifth Int. Conf. Image Processing and Scanning of Wood’, 23–26 March 2003, Bad Waltersdorf, Austria.
    4. 4)
    5. 5)
      • Nyström, J., Grundberg, S.: `Real-time, noncontact measurements of spiral grain on debarked sawlogs', The 13th Int. Symp. Nondestructive Testing of Wood, 19–21 August 2002, Berkeley Campus, California, USA, University of California.
    6. 6)
      • E. Marszalec , M. Pietikäinen , F.Y. Wu , B.M. Dawson . (1993) Colour analysis of defects for automated visual inspection of pine wood, Proc. SPIE.
    7. 7)
    8. 8)
      • M. Johansson , J. Nyström , M. Öhman . Prediction of longitudinal shrinkage and bow in Norway spruce studs using scanning techniques. J. Wood Sci , 4 , 291 - 297
    9. 9)
      • G. Ward . Measuring and modeling anisotropic reflection. ACM SIGGRAPH Comput. Graph. , 2 , 265 - 272
    10. 10)
    11. 11)
    12. 12)
      • A.G. Maristany , P.K. Lebow , C.C. Brunner , D.A. Butler , J.W. Funck . (1992) Classifying wood-surface features using dichromatic reflection’, ‘Optics in agriculture and forestry.
    13. 13)
      • R.W. Conners , C.W. McMillin , K. Lin , R.E. Vasquez Espinosa . Identifying and locating surface defects in wood: part of an automated lumber processing system. IEEE Trans. Pattern Anal. Mach. Intell. , 6 , 573 - 583
    14. 14)
      • H. Ragheb , E. Hancock . A Light scattering model for layered dielectrics with rough surface boundaries. Int. J. Comput. Vis. , 2 , 179 - 207
    15. 15)
      • Lampinen, J., Smolander, S., Silvén, O., Kauppinen, H.: `Wood defect recognition: a comparative study', Workshop on Machine Vision for Advanced Production, 1994, Oulu, Finland, p. 7.
    16. 16)
    17. 17)
      • Hagman, O.: `On reflections of wood: wood quality features modelled by means of multivariate image projections to latent structures in multispectral images', 1996, Doctoral, , 198.
    18. 18)
      • H. Ragheb , E. Hancock . Modified Beckmann-Kirchhoff scattering theory for rough surface analysis. Pattern Recogni. , 7 , 2004 - 2020
    19. 19)
      • S. Simonaho . (2005) On the laser light scattering pattern in wood research.
    20. 20)
      • S.K. Nayar , K. Ikeuchi , T. Kanade . Surface reflection: physical and geometrical perspectives. IEEE Trans. Pattern Anal. Mach. Intell. , 7 , 611 - 634
    21. 21)
      • J. Nyström , O. Hagman . Real time spectral classification of compression wood in Picea abies. J. Wood Sci. , 30 - 37
    22. 22)
      • Nyström, J.: `Automatic measurement of compression wood and spiral grain for prediction of distortion in sawn wood products', 2002, Doctoral, Luleå University of Technology.
    23. 23)
      • Matthews, P.C., Soest, J.F.: `Method for determining localized fiber angle in a three dimensional fibrous material', US Patent 4606645, August 1986, http://www.freepatentsonline.com/4606645.html.
    24. 24)
      • R. Cook , K. Torrance . A reflectance model for computer graphics. ACM SIGGRAPH Comput. Graph. , 3 , 307 - 316
    25. 25)
      • J. Pavlianen . (2003) On the optical metrology of wood ultrastructure.
    26. 26)
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cvi.2008.0078
Loading

Related content

content/journals/10.1049/iet-cvi.2008.0078
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address