Real-time identification using a canonical face depth map

Access Full Text

Real-time identification using a canonical face depth map

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Computer Vision — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

A practical identification system based on 3D face scanning is presented. The speed of comparing a probe scan to the gallery is enabled by scan normalisation followed by extraction of higher level features. Our Canonical Face Depth Map (CFDM) is a standardised representation for three-dimensional (3D) face data in a face-based coordinate system. Our experiments demonstrate that the CFDM normalisation algorithm is (a) robust to noise and occlusion, (b) significantly reduces storage requirements and thus I/O time, and (c) improves the efficiency of face recognition algorithms. Producing the CFDM takes less than a second on a desktop for 320×240 rangel scans. Current 3D scanning and matching methods are too slow for person identification, even for a watch list of only a few hundred face models. Transforming scanned 3D faces into CFDM format enables a probe scan to be matched to hundreds or thousands of gallery scans in a few seconds on a commodity computer. The best results achieved so far are a rank-1 recognition rate of 98.2% and a speed of 1900 face matches per second. Extrapolating these results suggests that multistage systems could achieve even better performance on even larger galleries.

Inspec keywords: extrapolation; image matching; face recognition; feature extraction; image representation

Other keywords: real-time identification; scan normalisation; 3D face scanning; feature extraction; canonical face depth map; 3D face data; probe scan; image matching; face recognition; person identification

Subjects: Interpolation and function approximation (numerical analysis); Interpolation and function approximation (numerical analysis); Image recognition; Computer vision and image processing techniques

References

    1. 1)
      • Phillips, P.J., Flynn, P.J., Scruggs, T., Bowyer, K.W., Chang, J., Hoffman, K., Marques, J., Min, J., Worek, W.: `Overview of the face recognition grand challenge', Proc. IEEE Conf. Computer Vision and Pattern Recognition, 2005.
    2. 2)
      • P.J. Besl , N.D. McKay . A method for registration of 3-d shapes. IEEE Trans. Pattern Anal. Mach. Intelli , 2 , 239 - 256
    3. 3)
      • Conde, C., Serrano, A.: `3D facial normalisation with spin images and influence of range', Proc. IEEE Conf. Computer Vision and Pattern Recognition, 2005, p. 115.
    4. 4)
      • J. Daugman . (1998) Recognizing persons by their iris patterns, personal identification in networked society section 5.
    5. 5)
      • Colbry, D.: `Human face verification by robust 3d surface alignment', 2006, PhD, Michigan State Unviersity.
    6. 6)
      • Minolta, Vivid 910 non-contact 3D laser scanner. http://www.konicaminolta.com/sensingusa/products/3d/noncontact/vivid910/index.html, 2008.
    7. 7)
      • A.K. Jain , S.Z. Li . (2011) Handbook of face recognition.
    8. 8)
      • Boehnen, C., Russ, T.: `A fast multi-modal approach to facial feature detection', Proc. Seventh IEEE Workshops on Applications of Computer Vision (WACV/MOTION '05), 2004, Breckenridge, Colorado, 01, p. 135–142.
    9. 9)
      • Chetverikov, D., Svirko, D., Stepanov, D., Kresek, P.: `The trimmed iterative closest point algorithm', Proc. 16th Int. Conf. Pattern Recognition, 2002, Qúebec City, Canada, 3, p. 545–548.
    10. 10)
      • Boehnen, C., Flynn, P.: `Accuracy of 3D scanning technologies in a face scanning scenario, 3DIM '05', Proc. Fifth Int. Conf. 3-D Digital Imaging and Modeling, 2005, Ottawa, Ontario, Canada, p. 310–317.
    11. 11)
      • S. Malassiotis , M.G. Strintzis . Robust face recognition using 2D and 3D data: pose and illumination compensation. Pattern Recog. , 2537 - 2548
    12. 12)
      • G. Stockman , J. Payne , J. Sadler , D. Colbry . Error analysis of sensor input variations in a 3D face surface matching system. Sensor Rev. J , 2 , 116 - 121
    13. 13)
      • Xu, C., Wang, Y., Tan, T., Quan, L.: `Face recognition based on 3D mesh models', Proc. SPIE – The International Society for Optical Engineering, 2004, Denver, CO.
    14. 14)
      • M. Benz , X. Laboureux , T. Maier , E. Nkenke , S. Seeger , F.W. Neukam , G. Husler . The symmetry of faces. Vision, Modeling, and Visualization
    15. 15)
      • Y. Wang , C. Chua , Y. Ho . Facial feature detection and face recognition from 2D and 3D. Pattern Recog. Lett. , 1191 - 1202
    16. 16)
      • Colbry, D., Stockman, G., Jain, A.K.: `Detection of anchor points for 3D face verification', Proc. of Workshop Advanced 3D Imaging for Safety and Security, 2005, San Diego, CA.
    17. 17)
      • Colbry, D., Stockman, G.: `Identity verification via the 3DID face alignment system', Proc. IEEE Workshop on Applications of Computer Vision (WACV), 2007, Austin, TX.
    18. 18)
      • C. BenAbdelkader , P.A. Griffin . Comparing and combining depth and texture cues for face recognition. Image Vis. Comput. , 339 - 352
    19. 19)
      • P.J. Phillips , P. Grother , R.J. Michaels , D.M. Blackburn , E. Tabassi , M. Bone . (2003) Face recognition vendor test (FRVT), overview and summary.
    20. 20)
      • Savvides, M., Kumar, B.V.K.V., Khosla, P.K.: `Eigenphases vs. eigenfaces', Proc. Int. Conf. Pattern Recognition, 2004, Los Alamitos, CA, USA, 03, p. 810–813.
    21. 21)
      • B. Manjunath , W. Ma . Texture features for browsing and retrieval of image data. Pattern Anal. Mach. Intelli., IEEE Trans. , 837 - 842
    22. 22)
      • Dorai, C.: `Cosmos: a framework for representation and recognition of 3D free-form objects', 1996, PhD, Michigan State University.
    23. 23)
      • 3dMD, http://www.3dmd.com/.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cvi.2008.0055
Loading

Related content

content/journals/10.1049/iet-cvi.2008.0055
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading