Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Computationally efficient model predictive control for a class of linear parameter-varying systems

The use of linear parameter varying (LPV) prediction models has been proven to be an effective solution to develop model predictive control (MPC) algorithms for linear and non-linear systems. However, the computational effort is a crucial issue for LPV-MPC, which has severely limited its application especially in embedded control. Indeed, for dynamical systems of dimension commonly found in embedded applications, the time needed to form the quadratic programming (QP) problem at each time step, can be substantially higher than the average time to solve it, making the approach infeasible in many control boards. This study presents an algorithm that drastically reduces this computational complexity for a particular class of LPV systems. They show that when the input matrix is right-invertible, the rebuild phase of the QP problem can be accelerated by means of a coordinate transformation which approximates the original formulation. Then they introduce a variant of the algorithm, able to further reduce this time, at the cost of a slightly increased sub-optimality. The presented results on vehicle dynamics and electrical motor control confirm the effectiveness of the two novel methods, especially in those applications where computational load is a key indicator for success.

References

    1. 1)
      • 23. Besselmann, T., Löfberg, J., Morari, M.: ‘Explicit MPC for LPV systems: stability and optimality’, IEEE Trans. Autom. Control, 2012, 57, (9), pp. 23222332.
    2. 2)
      • 38. Preindl, M., Bolognani, S.: ‘Model predictive direct torque control with finite control set for pmsm drive systems, part 1: maximum torque per ampere operation’, IEEE Trans. Ind. Inf., 2013, 9, (4), pp. 19121921.
    3. 3)
      • 17. Gebraad, P.M., van Wingerden, J.-W., Fleming, P.A., et al: ‘LPV identification of wind turbine rotor vibrational dynamics using periodic disturbance basis functions’, IEEE Trans. Control Syst. Technol., 2013, 21, (4), pp. 11831190.
    4. 4)
      • 22. Falcone, P., Borrelli, F., Asgari, J., et al: ‘Predictive active steering control for autonomous vehicle systems’, IEEE Trans. Control Syst. Technol., 2007, 15, (3), pp. 566580.
    5. 5)
      • 8. Cimini, G., Bernardini, D., Bemporad, A., et al: ‘Online model predictive torque control for permanent magnet synchronous motors’. 2015 IEEE Int. Conf. on Industrial Technology (ICIT), Seville, Spain, March 2015, pp. 23082313.
    6. 6)
      • 5. Richter, S., Jones, C., Morari, M.: ‘Computational complexity certification for real-time MPC with input constraints based on the fast gradient method’, IEEE Trans. Autom. Control, 2012, 57, (6), pp. 13911403.
    7. 7)
      • 29. Cavanini, L., Cimini, G., Ippoliti, G.: ‘A fast model predictive control algorithm for linear parameter varying systems with right invertible input matrix’. IEEE 2017 25th Mediterranean Conf. on Control and Automation (MED), Valletta, Malta, 2017, pp. 4247.
    8. 8)
      • 33. Nesterov, Y., Nemirovskii, A.: ‘Interior-point polynomial algorithms in convex programming’ (Society for Industrial and Applied Mathematics, Philadelphia, PA, 1994).
    9. 9)
      • 16. Tóth, R., Abbas, H.S., Werner, H.: ‘On the state-space realization of LPV input-output models: Practical approaches’, IEEE Trans. Control Syst. Technol., 2012, 20, (1), pp. 139153.
    10. 10)
      • 3. Maciejowski, J.M.: ‘Predictive control: with constraints’ (Prentice Hall, Englewood Cliffs, NJ, 2002).
    11. 11)
      • 34. Kurtz, M.J., Henson, M.A.: ‘Feedback linearizing control of discrete-time nonlinear systems with input constraints’, Int. J. Control, 1998, 70, (4), pp. 603616.
    12. 12)
      • 36. El-Farra, N.H., Armaou, A., Christofides, P.D.: ‘Analysis and control of parabolic PDE systems with input constraints’, Automatica, 2003, 39, (4), pp. 715725.
    13. 13)
      • 9. Wan, Z., Kothare, M.V.: ‘Efficient scheduled stabilizing model predictive control for constrained nonlinear systems’, Int. J. Robust Nonlinear Control, 2003, 13, (3-4), pp. 331346.
    14. 14)
      • 37. Deng, J., Becerra, V., Stobart, R.: ‘Input constraints handling in an MPC/feedback linearization scheme’, Int. J. Appl. Math. Comput. Sci., 2009, 19, (2), pp. 219232.
    15. 15)
      • 1. Mayne, D.Q.: ‘Model predictive control: recent developments and future promise’, Automatica, 2014, 50, (12), pp. 29672986.
    16. 16)
      • 6. Bemporad, A.: ‘A quadratic programming algorithm based on nonnegative least squares with applications to embedded model predictive control’, IEEE Trans. Autom. Control, 2016, 61, (4), pp. 11111116.
    17. 17)
      • 28. Martin, D.P., Johnson, K.E., Zalkind, D.S., et al: ‘LPV-based torque control for an extreme-scale morphing wind turbine rotor’. 2017 American Control Conf. (ACC), Seattle, WA, May 2017, pp.13831388.
    18. 18)
      • 30. Kouro, S., Perez, M., Rodriguez, J., et al: ‘Model predictive control: MPC's role in the evolution of power electronics’, IEEE Ind. Electron. Mag., 2015, 9, (4), pp. 821.
    19. 19)
      • 14. Zolghadri, A.: ‘Advanced model-based fdir techniques for aerospace systems: today challenges and opportunities’, Prog. Aerosp. Sci., 2012, 53, pp. 1829.
    20. 20)
      • 12. Gill, P.E., Saunders, M.A., Wong, E.: ‘Chapter On the performance of SQP methods for nonlinear optimization’, in Terlaky, T., Curtis, F.E. (Eds.): Modeling and optimization: theory and applications (MOPTA), Bethlehem, PA, USA, August 2014, selected contributions' (Springer International Publishing, Cham, 2015), pp. 95123.
    21. 21)
      • 19. Shamma, J.S.: ‘An overview of LPV systems’, ‘Control of linear parameter varying systems with applications’ (Springer, Boston, MA, 2012), pp. 326.
    22. 22)
      • 10. Hours, J.H., Jones, C.N.: ‘A parametric nonconvex decomposition algorithm for real-time and distributed nmpc’, IEEE Trans. Autom. Control, 2016, 61, (2), pp. 287302.
    23. 23)
      • 7. Vazquez, S., Leon, J., Franquelo, L., et al: ‘Model predictive control: a review of its applications in power electronics’, IEEE Ind. Electron. Mag., 2014, 8, (1), pp. 1631.
    24. 24)
      • 15. Wu, L., Yang, X., Li, F.: ‘Nonfragile output tracking control of hypersonic air-breathing vehicles with an LPV model’, IEEE/ASME Trans. Mechatronics, 2013, 18, (4), pp. 12801288.
    25. 25)
      • 35. Simon, D., Lofberg, J., Glad, T.: ‘Nonlinear model predictive control using feedback linearization and local inner convex constraint approximations’. 2013 European Control Conf. (ECC), Zurich, Switzerland, July 2013, pp. 20562061.
    26. 26)
      • 25. Cimini, G., Kim, Y., McCain, B., et al: ‘Model predictive control for real-time position tracking of a catenary-free tram’. 20th IFAC World Congress, IFAC-PapersOnLine, 2017, vol. 50, no. (1), pp. 10001005.
    27. 27)
      • 2. Camacho, E.F., Alba, C.B.: ‘Model predictive control’ (Springer Science & Business Media, Berlin, 2013).
    28. 28)
      • 24. Falcone, P., Eric Tseng, H., Borrelli, F., et al: ‘MPC-based yaw and lateral stabilisation via active front steering and braking’, Veh. Syst. Dyn., 2008, 46, (S1), pp. 611628.
    29. 29)
      • 32. Patrinos, P., Bemporad, A.: ‘An accelerated dual gradient-projection algorithm for embedded linear model predictive control’, IEEE Trans. Autom. Control, 2014, 59, (1), pp. 1833.
    30. 30)
      • 11. Allgöwer, F., Zheng, A.: ‘Nonlinear model predictive control’, vol. 26 (Birkhäuser Verlag, 2012).
    31. 31)
      • 4. Bemporad, A., Morari, M., Dua, V., et al: ‘The explicit linear quadratic regulator for constrained systems’, Automatica, 2002, 38, (1), pp. 320.
    32. 32)
      • 20. Mejari, M., Piga, D., Bemporad, A.: ‘A bias-correction method for closed-loop identification of linear parameter-varying systems’, Automatica, 2018, 87, (Supplement C), pp. 128141.
    33. 33)
      • 13. Edwards, C., Marcos, A., Balas, G.: ‘Special issue on linear parameter varying systems’, Int. J. Robust Nonlinear Control, 2014, 24, (14), pp. 19251926.
    34. 34)
      • 26. Chen, P.-C., Shamma, J.S.: ‘Gain-scheduled 1-optimal control for boiler-turbine dynamics with actuator saturation’, J. Process Control, 2004, 14, (3), pp. 263277.
    35. 35)
      • 21. Toth, R.: ‘Modeling and identification of linear parameter-varying systems’ (Springer, Berlin, Heidelberg, 2010), (Lecture Notes in Control and Information Sciences).
    36. 36)
      • 31. Abbas, H.S., Tóth, R., Meskin, N., et al: ‘An MPC approach for lpv systems in input-output form’. 2015 IEEE 54th Annual Conf. on Decision and Control (CDC), Osaka, Japan, 2015, pp.9196.
    37. 37)
      • 27. Hangos, K.M., SzederkényiBokor, J.G.: ‘Analysis and control of nonlinear process systems’ (Springer Science & Business Media, London, 2006).
    38. 38)
      • 18. Shamma, J.S., Athans, M.: ‘Analysis of gain scheduled control for nonlinear plants’, IEEE Trans. Autom. Control, 1990, 35, (8), pp. 898907.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2017.1096
Loading

Related content

content/journals/10.1049/iet-cta.2017.1096
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address