access icon free Active fault tolerant control scheme for satellite attitude system subject to actuator time-varying faults

This study investigates the active fault tolerant control (FTC) problem for the attitude system of a rigid satellite, which is affected by parameter uncertainty, unknown exogenous disturbance and actuator time-varying faults. The upper bounds of the actuator time-varying fault and the generalised perturbation are unknown. A novel adaptive non-linear fault estimation observer is designed in order to obtain the estimated value of unknown time-varying faults. Then, an active fault tolerant attitude control approach is proposed under the framework of both backstepping control and adaptive control theory. Consequently, the Lyapunov theory is used to prove the robust asymptotic stability for the closed-loop attitude system of a faulty satellite under the proposed FTC scheme. Finally, simulation results on an in-orbit rigid satellite are provided to show the good fault tolerant performance, which validate the effectiveness and feasibility of the proposed scheme.

Inspec keywords: control nonlinearities; observers; perturbation theory; fault tolerant control; closed loop systems; artificial satellites; attitude control; Lyapunov methods; adaptive control; asymptotic stability

Other keywords: adaptive control theory; closed-loop attitude system; perturbation; robust asymptotic stability; in-orbit satellite; backstepping control; actuator time-varying faults; attitude control; FTC; Lyapunov theory; satellite attitude system; exogenous disturbance; parameter uncertainty; active fault tolerant control; adaptive nonlinear fault estimation observer

Subjects: Stability in control theory; Simulation, modelling and identification; Aerospace control; Spatial variables control; Nonlinear control systems; Self-adjusting control systems

References

    1. 1)
      • 14. Tao, G.: ‘Direct adaptive actuator failure compensation control: a tutorial’, J. Control Decis., 2014, 1, (1), pp. 75101.
    2. 2)
      • 6. Li, Z., Liu, G., Zhang, R., et al: ‘Fault detection’, identification and reconstruction for gyroscope in satellite based on independent component analysis', Acta Astronaut., 2011, 68, (7-8), pp. 10151023.
    3. 3)
      • 36. Xu, A., Zhang, Q.: ‘Residual generation for fault diagnosis in linear time-varying systems’, IEEE Trans. Autom. Control, 2004, 49, (5), pp. 767772.
    4. 4)
      • 20. Hu, Q.L., Shao, X.D.: ‘Smooth finite-time fault-tolerant attitude tracking control for rigid spacecraft’, Aerosp. Sci. Technol., 2016, 55, pp. 144157.
    5. 5)
      • 25. Persis, C.D., Isidori, A.: ‘A geometric approach to non-linear fault detection and isolation’, IEEE Trans. Autom. Control, 2001, 45, (6), pp. 853865.
    6. 6)
      • 39. Plestan, F., Shtessel, Y., Bregeault, V., et al: ‘New methodologies for adaptive sliding mode control’, Int. J. Control, 2010, 83, (9), pp. 19071919.
    7. 7)
      • 43. Xiao, B., Yin, S.: ‘Velocity-free Fault tolerant and uncertainty attenuation control for a class of nonlinear systems’, IEEE Trans. Ind. Electron., 2016, 63, (7), pp. 44004411.
    8. 8)
      • 4. Gao, Z.F., Lin, J.X., Cao, T., et al: ‘Sliding mode fault tolerant tracking control for a flexiable hypersonic vehicle with actuator faults’, ICIC Express Lett. B, Appl., 2015, 6, (7), pp. 17971804.
    9. 9)
      • 40. Lee, H., Utkin, V.I.: ‘Chattering suppression methods in sliding mode control systems’, Annu. Rev. Control, 2007, 31, (2), pp. 179188.
    10. 10)
      • 1. Guo, Y., Song, S.M., Li, X.H.: ‘Quaternion-based finite-time control for attitude tracking of the spacecraft without unwinding’, Int. J. Control Autom. Syst., 2015, 13, (6), pp. 13511359.
    11. 11)
      • 33. Xie, C.H., Yang, G.H.: ‘Data-based fault-tolerant control for uncertain linear systems with actuator faults’, IET Control Theory Appl., 2016, 10, (3), pp. 265272.
    12. 12)
      • 44. Xie, C.H., Yang, G.H.: ‘Data-based fault-tolerant control for affine nonlinear systems with actuator faults’, ISA Trans., 2016, 64, pp. 285292.
    13. 13)
      • 16. Cheng, Y.H., Jiang, B., Lu, N.Y., et al: ‘Incremental locally linear embedding-based fault detection for satellite attitude control systems’, J. Franklin Inst., 2016, 353, (1), pp. 1736.
    14. 14)
      • 11. Jiang, B., Xu, D., Shi, P., et al: ‘Adaptive neural observer-based backstepping fault tolerant control for near space vehicle under control effector damage’, IET Control Theory Appl., 2014, 8, (9), pp. 658666.
    15. 15)
      • 3. Fazlyab, A.R., Saberi, F.F., Kabganian, M.: ‘Adaptive attitude controller for a satellite based on neural network in the presence of unknown external disturbances and actuator faults’, Adv. Space Res., 2016, 57, (1), pp. 367377.
    16. 16)
      • 42. Xiao, B., Yin, S., Kaynak, O.: ‘Tracking control of robotic manipulators with uncertain kinematics and dynamics’, IEEE Trans. Ind. Electron., 2016, 63, (10), pp. 64396449.
    17. 17)
      • 8. Yang, H., Jiang, B., Staroswiecki, M., et al: ‘Fault recoverability and fault tolerant control for a class of interconnected nonlinear systems’, Automatica, 2015, 54, pp. 4955.
    18. 18)
      • 32. Williamson, W.R., Speyer, J.L., Dang, V.T., et al: ‘Fault detection and isolation for deep space satellites’, J. Guid. Control Dyn., 2009, 32, (5), pp. 15701584.
    19. 19)
      • 22. Tao, B., Jiang, Y.J., Ma, G., et al: ‘Actuator failure compensation and attitude control for rigid satellite by adaptive control using quaternion feedback’, J. Franklin Inst., 2014, 351, (1), pp. 296314.
    20. 20)
      • 17. Gao, C.Y., Zhao, Q., Duan, G.R.: ‘Robust actuator fault diagnosis scheme for satellite attitude control systems’, J. Franklin Inst., 2013, 350, (9), pp. 25602580.
    21. 21)
      • 38. Yang, C.D., Sun, Y.P.: ‘Mixed H2/H-infinity state-feedback design for microsatellite attitude control’, Control Eng. Pract., 2002, 10, (9), pp. 951970.
    22. 22)
      • 28. Kabore, P., Wang, H.: ‘Design of fault diagnosis filters and fault-tolerant control for a class of nonlinear systems’, IEEE Trans. Autom. Control, 2001, 46, (11), pp. 18051810.
    23. 23)
      • 15. Hu, D., Sarosh, A., Dong, Y.F.: ‘A novel KFCM based fault diagnosis method for unknown faults in satellite reaction wheels’, ISA Trans., 2012, 51, (2), pp. 309316.
    24. 24)
      • 37. Efimov, D., Edwards, C., Zolghadri, A.: ‘Enhancement of adaptive observer robustness applying sliding mode techniques’, Automatica, 2016, 72, pp. 5356.
    25. 25)
      • 21. Huo, X., Hu, Q.L., Xiao, B.: ‘Finite-time fault tolerant attitude stabilization control for rigid spacecraft’, ISA Trans., 2014, 53, (2), pp. 241250.
    26. 26)
      • 41. Xiao, B., Yin, S., Wu, L.G.: ‘A structure simple controller for satellite attitude tracking maneuver’, IEEE Trans. Ind. Electron., 2017, 64, (2), pp. 14361446.
    27. 27)
      • 10. Xu, D., Jiang, B., Shi, P.: ‘Robust NSV fault-tolerant control system design against actuator faults and control surface damage under actuator dynamics’, IEEE Trans. Ind. Electron., 2015, 62, (9), pp. 59195928.
    28. 28)
      • 26. Persis, C.D., Santis, R.D., Isidori, A.: ‘Nonlinear actuator fault detection and isolation for a VTOL aircraft’. Proc. IEEE, American Control Conf., vol. 6, 2001, pp. 44494454.
    29. 29)
      • 18. Zhang, J., Swain, A.K., Nguang, S.K.: ‘Robust sensor fault estimation scheme for satellite attitude control systems’, J. Franklin Inst., 2013, 350, (9), pp. 25812604.
    30. 30)
      • 34. Jiang, J., Yu, X.: ‘Fault-tolerant control systems: a comparative study between active and passive approaches’, Annu. Rev. Control, 2012, 36, (1), pp. 6072.
    31. 31)
      • 9. Yang, H., Jiang, B., Tao, G., et al: ‘Robust stability of switched nonlinear systems with switching uncertainties’, IEEE Trans. Autom. Control, 2016, 61, (9), pp. 25312537.
    32. 32)
      • 24. Persis, C.D., Isidori, A.: ‘On the observability codistributions of a nonlinear system’, Syst. Control Lett., 2000, 40, (5), pp. 297304.
    33. 33)
      • 2. MacKunis, W., Leve, F., Patre, P.M., et al: ‘Adaptive neural network-based satellite attitude control in the presence of CMG uncertainty’, Aerosp. Sci. Technol., 2016, 54, pp. 218228.
    34. 34)
      • 12. Xu, D., Jiang, B., Shi, P.: ‘Adaptive observer based data-driven control for nonlinear discrete-time processes’, IEEE Trans. Autom. Sci. Eng., 2014, 11, (4), pp. 10371045.
    35. 35)
      • 29. Gao, Z.F., Lin, J.X., Cao, T.: ‘Robust fault tolerant tracking control design for a linearized hypersonic vehicle with sensor faults’, Int. J. Control Autom. Syst., 2015, 13, (3), pp. 672679.
    36. 36)
      • 23. Frank, P.M.: ‘Fault diagnosis in dynamic systems using analytical and knowledge-based redundancy: a survey and some new results’, Automatica, 1990, 26, (3), pp. 459474.
    37. 37)
      • 30. Gao, C.Y., Duan, G.R.: ‘Fault diagnosis and fault tolerant control for nonlinear satellite attitude control systems’, Aerosp. Sci. Technol., 2014, 33, (1), pp. 915.
    38. 38)
      • 5. Patton, R.J., Uppal, F.J., Simani, S., et al: ‘Robust FDI applied to thruster faults of a satellite system’, Control Eng. Pract., 2010, 18, (9), pp. 10931109.
    39. 39)
      • 27. Kabore, P., Othman, S., Mckenna, T.F., et al: ‘Observer-based fault diagnosis for a class of non-linear systems application to a free radical copolymerization reaction’, Int. J. Control, 2000, 73, (9), pp. 787803.
    40. 40)
      • 31. Xiao, B., Hu, Q., Friswell, M.I.: ‘Active fault-tolerant attitude control for flexible spacecraft with loss of actuator effectiveness’, Int. J. Adapt. Control Signal Process., 2013, 27, (11), pp. 925943.
    41. 41)
      • 19. Zhao, D., Yang, H., Jiang, B., et al: ‘Attitude stabilization of a flexible spacecraft under actuator complete failure’, Acta Astronaut., 2016, 123, pp. 129136.
    42. 42)
      • 7. Yang, H., Jiang, B., Staroswiecki, M.: ‘Fault tolerant control for plug-and-play interconnected nonlinear systems’, J. Franklin Inst., 2016, 353, (10), pp. 21992217.
    43. 43)
      • 13. Fekih, A.: ‘Fault-tolerant flight control design for effective and reliable aircraft systems’, J. Control Decis., 2014, 1, (4), pp. 299316.
    44. 44)
      • 35. Zhang, Q.: ‘Adaptive observer for multiple-input-multiple-output (MIMO) linear time-varying systems’, IEEE Trans. Autom. Control, 2002, 47, (3), pp. 525529.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2017.0969
Loading

Related content

content/journals/10.1049/iet-cta.2017.0969
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading