access icon free Extended Kalman filtering for state estimation of a Hill muscle model

The objectives of this study are five-fold: (i) design an extended Kalman filter (EKF) for the single-muscle and two-muscle Hill models; (ii) design an EKF for unknown-input estimation of the muscle models; (iii) investigate the detectability of the muscle models; (iv) examine the robustness of the EKF to modeling errors; and (v) improve state estimation by incorporating physical constraints into the estimator. Two noisy measurements are available for state estimation: muscle length, which is measured from joint angles; and muscle activation, which is measured from electromyography sensors. Simulation results verify that the EKF is an effective approach for estimation of the activation signals and the states of the system if the system is detectable; the EKF outperforms the high gain observer; and the EKF is robust to modeling errors. The standard deviations of the estimation errors are in the range 0.01–0.1 mm for the muscle lengths, which is one to two orders of magnitude more accurate than the measurements. The standard deviations of the dimensionless muscle activation estimation errors are in the range 0.01–0.02, which is one order of magnitude more accurate than the measurements. A projection approach accounts for constraints to further improve the estimates.

Inspec keywords: nonlinear filters; Kalman filters; measurement errors; electromyography; observers; medical signal processing

Other keywords: unknown-input estimation; high gain observer; projection approach; single-muscle Hill models; electromyography sensors; standard deviation; joint angles; extended Kalman filtering; passive muscle elements; contractile muscle elements; EKF; muscle length measurement noise; activation signal estimation; two-muscle Hill models; dimensionless muscle activation estimation errors; system constraints; state estimation

Subjects: Bioelectric signals; Filtering methods in signal processing; Electrodiagnostics and other electrical measurement techniques; Digital signal processing; Biology and medical computing; Signal processing theory

References

    1. 1)
      • 24. Hill, A.: ‘Heat of shortening and the dynamic constants of muscle’, Proc. R. Soc. Lond. B, Biol. Sci., 1938, 126, (843), pp. 136195.
    2. 2)
      • 20. Han, J., Ding, Q., Xiong, A., et al: ‘A state-space EMG model for the estimation of continuous joint movements’, IEEE Trans. Ind. Electron., 2015, 62, (7), pp. 42674275.
    3. 3)
      • 25. Katz, B.: ‘The relation between force and speed in muscular contraction’, J. Physiol., 1939, 96, (1), pp. 4564.
    4. 4)
      • 19. Inoue, R.S., Terra, M.H., Cerri, J.P.: ‘Extended robust Kalman filter for attitude estimation’, IET Control Theory Appl., 2016, 10, (2), pp. 162172.
    5. 5)
      • 18. Hua-ming, Q., Wei, H., Lin-chen, Q., et al: ‘Robust extended Kalman filter for attitude estimation with multiplicative noises and unknown external disturbances’, IET Control Theory Appl., 2014, 8, (15), pp. 15231536.
    6. 6)
      • 16. Sun, Y., Wu, X., Cao, J., et al: ‘Fractional extended Kalman filtering for non-linear fractional system with Lévy noises’, IET Control Theory Appl., 2016, 11, (3), pp. 349358.
    7. 7)
      • 12. Hug, F., Tucker, K., Gennisson, J.L., et al: ‘Elastography for muscle biomechanics: toward the estimation of individual muscle force’, Exerc. Sport Sci. Rev., 2015, 43, (3), pp. 125133.
    8. 8)
      • 22. Potluri, C., Anugolu, M., Naidu, D.S., et al: ‘Real-time embedded frame work for sEMG skeletal muscle force estimation and LQG control algorithms for smart upper extremity prostheses’, Eng. Appl. Artif. Intell., 2015, 46, pp. 6781.
    9. 9)
      • 29. Martin, C.F., Schovanec, L.: ‘Muscle mechanics and dynamics of ocular motion’, J. Math. Syst. Estim. Control, 1998, 8, pp. 233236.
    10. 10)
      • 7. Yamasaki, T., Idehara, K., Xin, X.: ‘Estimation of muscle activity using higher-order derivatives, static optimization, and forward-inverse dynamics’, J. Biomech., 2016, 49, (10), pp. 20152022.
    11. 11)
      • 14. Grewal, M.S.: ‘Kalman filtering’ (Springer, New York, 2011).
    12. 12)
      • 23. Nguyen, T., Warner, H., Mohammadi, H., et al: ‘On the estimation of an agonistic-antagonistic muscle system’. Dynamic Systems and Control Conf. (ASME), 2017, pp. 19.
    13. 13)
      • 26. Warner, H., Richter, H., Van den Bogert, A.: ‘Nonlinear tracking control of an antagonistic muscle pair actuated system’. Dynamic Systems and Control Conf. (ASME), 2017, pp. 18.
    14. 14)
      • 31. Simon, D.: ‘Optimal state estimation: Kalman, H-infinity, and nonlinear approaches’ (John Wiley and Sons, Hoboken, New Jersey, 2006).
    15. 15)
      • 33. Friederich, J.A., Brand, R.A.: ‘Muscle fiber architecture in the human lower limb’, J. Biomech., 1990, 23, (1), pp. 9195.
    16. 16)
      • 21. Coronado, E., Chavez-Romero, R., Maya, M., et al: ‘Combining genetic algorithms and extended Kalman filter to estimate ankle's muscle-tendon parameters’. Dynamic Systems and Control Conf. (ASME), 2015, pp. 110.
    17. 17)
      • 6. Xing, K., Huang, J., Wang, Y., et al: ‘Tracking control of pneumatic artificial muscle actuators based on sliding mode and non-linear disturbance observer’, IET Control Theory Appl., 2010, 4, (10), pp. 20582070.
    18. 18)
      • 30. Bhattacharjee, T., Niemeyer, G.: ‘Antagonistic muscle based robot control for physical interactions’. Int. Conf. Robotics and Automation, 2015, pp. 298303.
    19. 19)
      • 38. Simon, D., Chia, T.: ‘Kalman filtering with state equality constraints’, IEEE Trans. Aerosp. Electron. Syst., 2002, 38, (1), pp. 128136.
    20. 20)
      • 3. Yucesoy, C.A., Koopman, B.H., Huijing, P.A., et al: ‘Three-dimensional finite element modeling of skeletal muscle using a two-domain approach: linked fiber-matrix mesh model’, J. Biomech., 2002, 35, (9), pp. 12531262.
    21. 21)
      • 13. Falisse, A., Van.Rossom, S., Jonkers, I., et al: ‘EMG-driven optimal estimation of subject-specific hill model muscle–tendon parameters of the knee joint actuators’, IEEE Trans. Biomed. Eng., 2017, 64, (9), pp. 22532262.
    22. 22)
      • 34. Winter, D.A., Yack, H.J.: ‘EMG profiles during normal human walking: stride-to-stride and inter-subject variability’, Electroencephalogr. Clin. Neurophysiol., 1986, 67, (5), pp. 402411.
    23. 23)
      • 17. Feng, B., Ma, H., Fu, M., et al: ‘Real-time state estimator without noise covariance matrices knowledge-fast minimum norm filtering algorithm’, IET Control Theory Appl., 2015, 9, (9), pp. 14221432.
    24. 24)
      • 32. Visser, J., Hoogkamer, J., Bobbert, M.F., et al: ‘Length and moment arm of human leg muscles as a function of knee and hip-joint angles’, Eur. J. Appl. Physiol. Occup. Physiol., 1990, 61, (5–6), pp. 453460.
    25. 25)
      • 15. Li, W., Jia, Y., Du, J.: ‘Distributed consensus extended Kalman filter: a variance-constrained approach’, IET Control Theory Appl., 2016, 11, (3), pp. 382389.
    26. 26)
      • 1. Zajac, F.: ‘Muscle and tendon: properties, models, scaling, and application to biomechanics and motor control’, Crit. Rev. Biomed. Eng., 1988, 17, (4), pp. 359411.
    27. 27)
      • 5. Erdemir, A., McLean, S., Herzog, W., et al: ‘Model-based estimation of muscle forces exerted during movements’, Clin. Biomech., 2007, 22, (2), pp. 131154.
    28. 28)
      • 9. Lin, Y.C., Walter, J.P., Banks, S.A., et al: ‘Simultaneous prediction of muscle and contact forces in the knee during gait’, J. Biomech., 2010, 43, (5), pp. 945952.
    29. 29)
      • 4. Huang, X., Zhang, X., Lu, H.: ‘Forwarding-based dynamic surface control for antagonistic actuated robots’, IET Control Theory Appl., 2016, 10, (15), pp. 17631770.
    30. 30)
      • 8. Buchanan, T.S., Lloyd, D.G., Manal, K., et al: ‘Neuromusculoskeletal modeling: estimation of muscle forces and joint moments and movements from measurements of neural command’, J. Appl. Biomech., 2004, 20, (4), pp. 367395.
    31. 31)
      • 2. Huxley, H.: ‘The double array of filaments in cross-striated muscle’, J. Biophys. Biochem. Cytol., 1957, 3, (5), pp. 631648.
    32. 32)
      • 35. Reif, K., Gunther, S., Yaz, E., et al: ‘Stochastic stability of the continuous-time extended Kalman filter’, IEE Proc., Control Theory Appl., 2000, 147, (1), pp. 4552.
    33. 33)
      • 36. Fakoorian, S., Azimi, V., Moosavi, M., et al: ‘Ground reaction force estimation in prosthetic legs with nonlinear Kalman filtering methods’, J. Dyn. Syst. Meas. Control, 2017, 139, pp. 111004111011.
    34. 34)
      • 28. Winters, J.M., Stark, L.: ‘Analysis of fundamental human movement patterns through the use of in-depth antagonistic muscle models’, IEEE Trans. Biomed. Eng., 1985, 32, (10), pp. 826839.
    35. 35)
      • 10. Ngeo, J.G., Tamei, T., Shibata, T.: ‘Continuous and simultaneous estimation of finger kinematics using inputs from an EMG-to-muscle activation model’, J. Neuroeng. Rehabil, 2014, 11, (1), pp. 111122.
    36. 36)
      • 11. Michieletto, S., Tonin, L., Antonello, M., et al: ‘GMM-based single-joint angle estimation using EMG signals’, in Emanuele, M., Nathan, M., Karsten, B., Hiroaki, Y. (Eds.): ‘Intelligent autonomous systems 13’ (Springer, Switzerland, 2016), pp. 11731184.
    37. 37)
      • 27. Hogan, N.: ‘Adaptive control of mechanical impedance by coactivation of antagonist muscles’, IEEE Trans. Autom. Control, 1984, 29, (8), pp. 681690.
    38. 38)
      • 37. Maggiore, M., Passino, K.M.: ‘A separation principle for a class of non-UCO systems’, IEEE Trans. Autom. Control, 2003, 48, (7), pp. 11221133.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2017.0645
Loading

Related content

content/journals/10.1049/iet-cta.2017.0645
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading