access icon free Consensus controllers for general integrator multi-agent systems: analysis, design and application to autonomous surface vessels

This study addresses the distributed and consensus control problems for multi-agent systems with general integrator dynamics and undirected topology. First, based on the frequency domain description of linear multi-agent systems, a sufficient and necessary condition is imposed on each controller to achieve consensus. Second, both and optimal controllers are computed analytically according to the corresponding performance indices. The novel controllers not only can optimise the reference tracking performance but also has a simple tuning way to trade off the nominal performance and robustness. Finally, by application to the formation control of autonomous surface vessels shows the effectiveness of the proposed two control strategies.

Inspec keywords: control system synthesis; H2 control; graph theory; distributed control; multi-agent systems; frequency-domain analysis; H∞ control; performance index; autonomous underwater vehicles; linear systems

Other keywords: sufficient condition; general integrator multiagent systems; performance indices; general integrator dynamics; autonomous surface vessels; undirected topology; distributed H∞ consensus control problems; reference tracking performance; H2 optimal controllers; necessary condition; H2 consensus control problems; frequency domain description; linear multiagent systems; H∞ optimal controllers

Subjects: Linear control systems; Mathematical analysis; Combinatorial mathematics; Optimal control; Multivariable control systems; Control system analysis and synthesis methods

References

    1. 1)
      • 5. Shen, D.B., Sun, W.J., Sun, Z.D.: ‘Adaptive PID formation control of nonholonomic robots without leader's velocity information’, ISA Trans., 2014, 53, (2), pp. 474480, doi:10.1016/j.isatra.2013.12.010.
    2. 2)
      • 27. Oh, K.K., Park, M.C., Ahn, H.S.: ‘A survey of multi-agent formation control’, Automatica, 2015, 53, pp. 424440, doi:10.1016/j.automatica.2014.10.022.
    3. 3)
      • 13. Li, Z.K., Ren, W., Liu, X.D., et al: ‘Distributed consensus of linear multi-agent systems with adaptive dynamic protocols’, Automatica, 2013, 49, pp. 19861995, doi:10.1016/j.automatica.2013.03.015.
    4. 4)
      • 6. Xu, W.B., Liu, X.P., Chen, X.B., et al: ‘Improved artificial moment method for decentralized local path planning of multirobots’, IEEE Trans. Control Syst. Technol., 2015, 23, (6), pp. 23832390, doi:10.1109/TCST.2015.2402231.
    5. 5)
      • 3. Richert, D., Cortes, J.: ‘Optimal leader allocation in UAV formation pairs ensuring cooperation’, Automatica, 2013, 49, (11), pp. 31893198, doi:10.1016/j.automatica.2013.07.030.
    6. 6)
      • 16. Zhang, W.L., Liu, J.C., Wang, H.H.: ‘Multi-tracking control of heterogeneous multi-agent systems with single-input-single-output based on complex frequency domain analysis’, IET Control Theory Appl., 2016, 10, (8), pp. 861868, doi:10.1049/iet-cta.2015.1184.
    7. 7)
      • 29. Yang, S.P., Xu, J.X.: ‘Improvements on ‘A new framework of consensus protocol design for complex multi-agent systems’’, Syst. Control Lett., 2012, 61, (9), pp. 945949, doi:10.1016/j.sysconle.2012.06.002.
    8. 8)
      • 1. Ihle, I.F., Jouffroy, J., Fossen, T.I.: ‘Formation control of marine surface craft: a Lagrangian approach’, IEEE J. Ocean. Eng., 2006, 31, (4), pp. 922934, doi:10.1109/JOE.2006.880426.
    9. 9)
      • 19. Doyle, J., Francis, B., Tannenbaum, A.: ‘Feedback control theory’ (Macmillan Publishing Company, Basingstoke, 1992).
    10. 10)
      • 4. Hafez, A.T., Marasco, A.J., Givigi, S.N., et al: ‘Solving multi-UAV dynamic encirclement via model predictive control’, IEEE Trans. Control Syst. Technol., 2015, 23, (6), pp. 22512265, doi:10.1109/TCST.2015.2411632.
    11. 11)
      • 26. Ye, F., Zhang, W.D., Ou, L.L.: ‘H2 consensus control of time-delayed multi-agent systems: a frequency-domain method’, ISA Trans., 2017, 66, pp. 437447, doi:10.1016/j.isatra.2016.09.016.
    12. 12)
      • 24. Zhou, K.M.: ‘Essentials of robust control’ (Prentice-Hall, Upper Saddle River, NJ, 1998).
    13. 13)
      • 21. Lin, P., Jia, Y.M., Li, L.: ‘Distributed robust H consensus control in directed networks of agents with time-delay’, Syst. Control Lett., 2008, 57, (8), pp. 643653, doi:10.1016/j.sysconle.2008.01.002.
    14. 14)
      • 8. Cao, Y.C., Yu, W.W., Ren, W., et al: ‘An overview of recent progress in the study of distributed multi-agent coordination’, IEEE Trans. Ind. Inf., 2013, 9, (1), pp. 427438, doi:10.1109/TII.2012.2219061.
    15. 15)
      • 20. Li, Z.K., Duan, Z.S., Chen, G.R.: ‘On H and H2 performance regions of multi-agent systems’, Automatica, 2011, 47, (4), pp. 797803, doi:10.1016/j.automatica.2011.01.054.
    16. 16)
      • 14. Zhang, W.D., Xu, X.M., Sun, Y.X.: ‘Quantitative performance design for integrating processes with time delay’, Automatica, 1999, 35, pp. 719723, doi:10.1016/S0005-1098(98)00207-6.
    17. 17)
      • 22. Ghadami, R., Shafai, B.: ‘Distributed H2 control of multi-agent dynamic systems: continuous-time case’. American Control Conf., 2010, pp. 39693974, doi:10.1109/ACC.2010.5530637.
    18. 18)
      • 18. Burbano, D., Bernardo, M.D.: ‘Distributed PID control for consensus of homogeneous and heterogeneous networks’, IEEE Trans. Control Netw. Syst., 2015, 2, (2), pp. 154163, doi:10.1109/TCNS.2014.2378914.
    19. 19)
      • 9. Cheng, L., Hou, Z.G., Tan, M., et al: ‘Necessary and sufficient conditions for consensus of double-integrator multi-agent systems with measurement noises’, IEEE Trans. Autom. Control, 2011, 56, (8), pp. 19581963, doi:10.1109/TAC.2011.2139450.
    20. 20)
      • 10. Li, S.H., Du, H.B., Lin, X.Z.: ‘Finite-time consensus algorithm for multi-agent systems with double-integrator dynamics’, Automatica, 2011, 47, (8), pp. 17061712, doi:10.1016/j.automatica.2011.02.045.
    21. 21)
      • 28. Fossen, T.I.: ‘Guidance and control of ocean vehicles’ (John Wiley and Sons Inc, Hoboken, NJ, 1994).
    22. 22)
      • 15. Chen, Y.Y., Shi, Y.: ‘Consensus for linear multiagent systems with time-varying delays: a frequency domain perspective’, IEEE Trans. Cybern., 2016, 47, (8), pp. 21432150.
    23. 23)
      • 17. Gattami, A., Murray, R.: ‘A frequency domain condition for stability of interconnected MIMO systems’, American Control Conf., 2004, 4, pp. 37233728.
    24. 24)
      • 2. Liu, L., Wang, D., Peng, Z.H.: ‘Coordinated path following of multiple underactuated marine surface vehicles along on curve’, ISA Trans., 2016, 64, pp. 258268.
    25. 25)
      • 12. Rezaee, H., Abdollahi, F.: ‘Decentralized H consensus protocol for a class of high-order multiagent systems’, Int. J. Robust Nonlinear Control, 2016, 26, pp. 33303343, doi:10.1002/rnc.3509.
    26. 26)
      • 23. Wang, J.Y., Duan, Z.S., Zhao, Y., et al: ‘H and H2 control of multi-agent systems with transient performance improvement’, Int. J. Control, 2013, 86, (12), pp. 21312145, doi:10.1080/00207179.2013.802371.
    27. 27)
      • 11. Tian, Y.P., Zhang, Y.: ‘High-order consensus of heterogeneous multi-agent systems with unknown communication delays’, Automatica, 2012, 48, (6), pp. 12051212, doi:10.1016/j.automatica.2012.03.017.
    28. 28)
      • 25. Wen, G.H., Hu, G.Q., Yu, W.W., et al: ‘Consensus tracking for higher-order multi-agent systems with switching directed topologies and occasionally missing control inputs’, Syst. Control Lett., 2013, 62, (12), pp. 11511158, doi:10.1016/j.sysconle.2013.09.009.
    29. 29)
      • 7. Olfati-Saber, R., Murray, R.M.: ‘Consensus problems in networks of agents with switching topology and time-delays’, IEEE Trans. Autom. Control, 2004, 49, (9), pp. 15201533, doi:10.1109/TAC.2004.834113.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cta.2017.0632
Loading

Related content

content/journals/10.1049/iet-cta.2017.0632
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading